Background: Precipitation of calcium (Ca) and phosphate (P) salts can lead to potentially lethal outcomes, especially in low-osmolarity parenteral nutrition (LO-PN) formulations. Three concentrations of amino acids (AA) and 2 concentrations of calcium gluconate and sodium phosphate injections on the compatibility of Ca and P in LO-PN admixtures were studied.

Methods: Final AA concentrations of 1%, 2%, or 3% (n = 3) and 5% glucose (G) were prepared with either 2.5 or 5 mmol/L (5 or 10 mEq) of Ca (n = 2) and 15 or 30 mmol/L of P (n = 2) for a total of 12 base (3 x 2 x 2) formulations. Triplicate bags of each were analyzed for subvisible micro-precipitates using the light obscuration (or extinction) method for particle counts per milliliter (PC) in the size range of 1.8-50 mum at 7 time intervals over 48 hours stored at 30 degrees C +/- 0.2 degrees C. Visual evaluation was performed using a high-intensity lamp against a black background for detection of macro-precipitates. The pH of all 36 admixtures was measured at 0 and 48 hours. Any precipitated material was isolated and characterized by polarized light microscopy and infrared spectroscopy.

Results: Of the 12 base LO-PN formulations tested, those containing 1% and 2% AA with 5 mmol/L of Ca and 30 mmol/L of P showed significant increases in PC, and some resulted in visible dibasic calcium phosphate precipitation. Analyses of variance based on concentrations of AA, Ca, P, and time were highly significant independent variables for increases in the PC of potentially embolic particles, that is, sizes >5 mum (P < .0001). The lowest concentrations of Ca and P, 2.5 and 15 mmol/L, respectively, had significantly lower PC (P < .05) for all sizes compared with the other Ca and P combinations.

Conclusions: LO-PN admixtures (AA

Download full-text PDF

Source
http://dx.doi.org/10.1177/0148607109338216DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
low-osmolarity parenteral
8
parenteral nutrition
8
lo-pn formulations
8
lo-pn admixtures
8
concentrations
5
mmol/l
5
calcium
4
phosphate compatibility
4
compatibility low-osmolarity
4

Similar Publications

Effect of a Mating Type Gene Editing in Using RNP/Nanoparticle Complex.

J Fungi (Basel)

December 2024

Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea.

Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of .

View Article and Find Full Text PDF

One of the key factors of the interaction 'osteoplastic material-organism' is the state of the implant surface. Taking into account the fact that the equilibrium in regeneration conditions is reached only after the reparative histogenesis process is completed, the implant surface is constantly modified. This work is devoted to the numerical description of the dynamic bilateral material-medium interaction under close to physiological conditions, as well as to the assessment of the comparability of the model with and experimental results.

View Article and Find Full Text PDF

Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering.

J Funct Biomater

November 2024

Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.

Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.

View Article and Find Full Text PDF

Enchondroma rarely occurs in the distal phalanx, and avulsion of the flexor digitorum profundus (FDP) tendon in this area is also rare. We report a case of recurrent enchondroma in the distal phalanx, which required reconstruction for an accidental FDP avulsion during surgery. A 36-year-old right-handed woman visited our hospital with a suspected recurrence of enchondroma and a planned surgery.

View Article and Find Full Text PDF

Objectives: This study aims to comparatively assess the preventive and protective effects of the self-assembling peptide P-4 on enamel erosion and evaluate the potential for enamel surface recovery when professional products are combined with home-use dental-care products during the erosive process.

Materials And Methods: Ninety-nine bovine incisors were divided into nine groups: a control group, four groups with the application of professional-products [P-4 peptide (Curodont-Repair), stannous/Sn containing solution (8% Sn), casein-phosphopeptide-amorphous-calcium-phosphate fluoride/CPP-ACPF (MI Varnish), sodium fluoride/NaF (Profluorid)] and four groups with the combination of professional products and home-use daily dental care products [P-4 peptide (Curodont Repair + Curodont Protect), stannous ions containing agents (8% Sn+Emofluor Gel Intensive-Care), CPP-ACPF (MI Varnish + MI Paste Plus), NaF (Profluorid + ReminPro)]. Professional products were applied once before a five-day erosive cycle, involving six 2-minute citric-acid exposures per day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!