Renal interstitial fibrosis is a major determinant of renal failure in the majority of chronic renal diseases. Transforming growth factor-beta (TGF-beta) is the single most important cytokine promoting renal fibrogenesis. Recent in vitro studies identified novel non-smad TGF-beta targets including p21-activated kinase-2 (PAK2), the abelson nonreceptor tyrosine kinase (c-Abl), and the mammalian target of rapamycin (mTOR) that are activated by TGF-beta in mesenchymal cells, specifically in fibroblasts but less in epithelial cells. In the present studies, we show that non-smad effectors of TGF-beta including PAK2, c-Abl, Akt, tuberin (TSC2), and mTOR are activated in experimental unilateral obstructive nephropathy in rats. Treatment with c-Abl or mTOR inhibitors, imatinib mesylate and rapamycin, respectively, each blocks noncanonical (non-smad) TGF-beta pathways in the kidney in vivo and diminishes the number of interstitial fibroblasts and myofibroblasts as well as the interstitial accumulation of extracellular matrix proteins. These findings indicate that noncanonical TGF-beta pathways are activated during the early and rapid renal fibrogenesis of obstructive nephropathy. Moreover, the current findings suggest that combined inhibition of key regulators of these non-smad TGF-beta pathways even in dose-sparing protocols are effective treatments in renal fibrogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806113PMC
http://dx.doi.org/10.1152/ajprenal.00320.2009DOI Listing

Publication Analysis

Top Keywords

tgf-beta pathways
16
renal fibrogenesis
12
non-smad tgf-beta
12
noncanonical tgf-beta
8
renal interstitial
8
mtor activated
8
obstructive nephropathy
8
renal
7
tgf-beta
7
pathways
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!