The major concern on the management of superheated liquids, in industrial environments, is the large potential hazards involved in cases of any accidental release. There is a possibility that a violent phase change could take place inside the fluid released generating a flashing jet. This violent phase change might produce catastrophic consequences, such as explosions, fires or toxic exposure, in the installations and in the surroundings. The knowledge and understanding of the mechanisms involved in those releases become an important issue in the prevention of these consequences and the minimization of their impact. This work presents a comprehensive review of information about flashing processes. The review begins with a description of the single phase jet followed by a description of the two-phase flashing jet. The concepts and implications of the thermodynamic and mechanical effects on the behaviour of the jets are considered at the beginning of the review. Following the review is devoted to the classification of the different study approaches used to understand flashing processes in the past, highlighting various critical parameters on the behaviour and the hazard consequences of flashing jets. The review also contains an extensive compilation of experimental, theoretical and numerical data relating to these phenomena, which includes information on the distinct characteristics of the jet, since type of jet, velocity distribution, expansion angle and mass phase change all require individual estimation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.08.138DOI Listing

Publication Analysis

Top Keywords

flashing jet
12
phase change
12
review flashing
8
violent phase
8
flashing processes
8
flashing
6
jet
6
review
5
general review
4
jet studies
4

Similar Publications

Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa.

Sci Data

January 2025

University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.

View Article and Find Full Text PDF

Dominant atmospheric circulation patterns associated with the rapid intensification of summer flash droughts in Eastern China.

Sci Total Environ

December 2024

Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.

Flash droughts (FDs), which are characterized by rapid intensification, occurred frequently over Eastern China, posing great challenges for drought forecasting and preparation on subseasonal timescale. However, the drivers of the rapid development of FDs are not well understood. By comparing with slow droughts (SDs), this study investigates the dominant physical processes responsible for FDs in four different regions over Eastern China through diagnosing moisture budgets and further linking them to large-scale atmospheric circulation patterns.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of small diameter shaped charges using 26 different explosives, combining numerical simulations with experimental tests on RHA steel targets.
  • Numerical simulations with Autodyn hydrocode provided insights into jet characteristics and explosive efficiencies, while static tests validated these findings.
  • Notably, high detonation velocity explosives like CL-20 demonstrated superior performance, with jet tip velocities significantly exceeding those of TNT, and the measured speeds closely matching numerical predictions.
View Article and Find Full Text PDF

Despite the recent advances and clinical demonstration of lipid nanoparticles (LNPs) for therapeutic and prophylactic applications, the extrahepatic delivery of nucleic acids remains a significant challenge in the field. This limitation arises from the rapid desorption of lipid-PEG in the bloodstream and clearance to the liver, which hinders extrahepatic delivery. In response, we explore the substitution of lipid-PEG with biodegradable block copolymers (BCPs), specifically poly(ε-caprolactone)--poly(ethylene glycol) (PCL--PEG).

View Article and Find Full Text PDF

Laser Powder Bed Fusion of Copper-Tungsten Powders Manufactured by Milling or Co-Injection Atomization Process.

Materials (Basel)

September 2024

Chair of Materials Engineering of Additive Manufacturing, TUM School of Engineering and Design, Technical University of Munich, Freisinger Landstraße 52, 85748 Garching, Germany.

The processing of pure copper (Cu) has been a challenge for laser-based additive manufacturing for many years since copper powders have a high reflectivity of up to 83% of electromagnetic radiation at a wavelength of 1070 nm. In this study, Cu particles were coated with sub-micrometer tungsten (W) particles to increase the laser beam absorptivity. The coated powders were processed by powder bed fusion-laser beam for metals (PBF-LB/M) with a conventional laser system of <300 watts laser power and a wavelength of 1070 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!