Arabidopsis gene co-expression network and its functional modules.

BMC Bioinformatics

Virtual Reality Applications Center, Iowa State University, Ames, IA 50010, USA.

Published: October 2009

Background: Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated.

Results: We constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively.

Conclusion: This study reveals new insight into the topological properties of biological networks. The preferential hub-hub connections might be necessary for the formation of modular structure in gene co-expression networks. The study also reveals new insight into the organization of gene functional modules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772859PMC
http://dx.doi.org/10.1186/1471-2105-10-346DOI Listing

Publication Analysis

Top Keywords

gene co-expression
16
arabidopsis gene
12
functional modules
12
biological networks
12
modular structure
12
cell cycle
12
network
8
co-expression network
8
densely connected
8
formation modular
8

Similar Publications

The universal bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays critical roles in regulating a variety of bacterial functions such as biofilm formation and virulence. The metabolism of c-di-GMP is inversely controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Recently, increasing studies suggested that the protein-protein interactions between DGCs/PDEs and their partners appear to be a common way to achieve specific regulation.

View Article and Find Full Text PDF

Analysis and validation of serum biomarkers in brucellosis patients through proteomics and bioinformatics.

Front Cell Infect Microbiol

January 2025

Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China.

Introduction: This study aims to utilize proteomics, bioinformatics, and machine learning algorithms to identify diagnostic biomarkers in the serum of patients with acute and chronic brucellosis.

Methods: Proteomic analysis was conducted on serum samples from patients with acute and chronic brucellosis, as well as from healthy controls. Differential expression analysis was performed to identify proteins with altered expression, while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-expression modules associated with clinical features of brucellosis.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Introduction: While most thyroid cancer patients have a favorable prognosis, anaplastic thyroid carcinoma (ATC) remains a particularly aggressive form with a median survival time of just five months. Conventional therapies offer limited benefits for this type of thyroid cancer. Our study aims to identify ATC patients who might bene t from immunotherapy.

View Article and Find Full Text PDF

Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients.

Life Med

October 2024

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.

Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!