Ear defects in patients affected by Treacher Collins syndrome necessitate the replacement of the existing anatomic residuals of the ears with custom-made prostheses. This paper describes a multidisciplinary protocol involving both medicine and computer-aided design/computer-aided manufacturing for manufacturing ear prostheses. Using innovative prototyping technologies together with conventional silicone processing procedures, a step-by-step procedure is presented. The complete workflow includes laser scanning of the defective regions of a patient's face, the use of 3D anatomic models from an ear digital library and rapid prototyping of both substructures for bar anchoring and moulds for silicone processing.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255840903251304DOI Listing

Publication Analysis

Top Keywords

ear prostheses
8
treacher collins
8
collins syndrome
8
laser scanning
8
rapid prototyping
8
silicone processing
8
cad/cam bilateral
4
ear
4
bilateral ear
4
prostheses construction
4

Similar Publications

Can a Cochlear Implant Be Used as an Electrical Impedance Tomography Device?

Int J Numer Method Biomed Eng

January 2025

Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.

The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.

View Article and Find Full Text PDF

Exploring diverse biomaterials and implants in the ear, nose, and throat by understanding adverse effects and post-usage events. Literature was obtained from Scopus, PubMed, Google Scholar, and Web of Science. A comprehensive analysis was conducted on original research studies, case reports, and case series spanning from December 2010 to May 2022.

View Article and Find Full Text PDF

Objective: This systematic review and meta-analysis compares the efficacy and complication rate of absorbable versus non-absorbable 3D-printed, patient-customized, maxillofacial implants in facial trauma patients.

Data Sources: A comprehensive search of four databases (PubMed, Scopus, Web of Science, and Cochrane) was conducted.

Methods: A systematic review and single-proportion meta-analysis was conducted employing PRISMA guidelines.

View Article and Find Full Text PDF

Clinical trials for implantable neural prostheses: understanding the ethical and technical requirements.

Lancet Digit Health

January 2025

Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland; NeuroEngineering Laboratory, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria. Electronic address:

Neuroprosthetics research has entered a stage in which animal models and proof-of-concept studies are translated into clinical applications, often combining implants with artificial intelligence techniques. This new phase raises the question of how clinical trials should be designed to scientifically and ethically address the unique features of neural prostheses. Neural prostheses are complex cyberbiological devices able to acquire and process data; hence, their assessment is not reducible to only third-party safety and efficacy evaluations as in pharmacological research.

View Article and Find Full Text PDF

Detection of Extracochlear Electrodes Using Electrical Field Imaging (EFI).

Otol Neurotol

February 2025

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.

Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).

Study Design: Retrospective cohort study.

Setting: Tertiary academic medical center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!