Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

Water Sci Technol

Institute of Industrial Science, The University of Tokyo, Be605, Meguro-ku, Tokyo, Japan.

Published: December 2009

Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2009.596DOI Listing

Publication Analysis

Top Keywords

pollutant loads
28
river basins
20
annual pollutant
16
loads river
12
basins japan
12
potential annual
8
land cover
8
surface water
8
oxygen demand
8
pollutant
7

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Platinum single atoms on titania aid dye photodegradation whereas platinum nanoparticles do not.

Nanoscale

January 2025

Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany.

The photocatalytic degradation of unwanted organic species has been investigated for decades using modified and non-modified titania nanostructures. In the present study, we investigate the co-catalytic effect of single atoms (SAs) of Pt and Pt nanoparticles on titania substrates on the degradation of the two typical photodegradation model pollutants: Acid Orange 7 (AO7) and Rhodamine B (RhB). For this, we use highly defined sputter deposited anatase layers and load them with Pt SAs at different loading densities or alternatively with Pt nanoparticles.

View Article and Find Full Text PDF

High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.

View Article and Find Full Text PDF

Eastern North Carolina has been subjected to widespread water quality degradation for decades, notably throughout the Cape Fear River Watershed, owing largely to the magnitude of concentrated animal feeding operations (CAFOs) in the region. Long-term nutrient monitoring data from numerous locations throughout southeastern North Carolina have shown significantly elevated organic nitrogen (Org-N) concentrations starting around the year 2000-a concerning development, as labile Org-N can stimulate algal blooms and subsequent bacterial production, thus enhancing eutrophication in freshwater systems. By measuring the stable isotope signatures (δC, δN) of particulate organic matter sampled from a range of southeastern North Carolina waters, the predominant sources to the observed Org-N loadings were elucidated.

View Article and Find Full Text PDF

Riverine physical and chemical characteristics are influencing ecosystem integrity while shaping and impacting species richness and diversity. Changes in these factors could potentially influence community structuring through competition, predation and localised species extinctions. In this study, eight sampling sites over multiple seasons were assessed along the streams draining the City of Nelspruit, South Africa, to examine river health based on water and sediment quality, while using macroinvertebrates as bioindicators for pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!