Study of atmospheric aerosols and mixing layer by LIDAR.

Radiat Prot Dosimetry

ISAC-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.

Published: December 2009

The LIDAR (laser radar) is an active remote sensing technique, which allows for the altitude-resolved observation of several atmospheric constituents. A typical application is the measurement of the vertically resolved aerosol optical properties. By using aerosol particles as a marker, continuous determination of the mixing layer height (MLH) can also be obtained by LIDAR. Some examples of aerosol extinction coefficient profiles and MLH extracted from a 1-year LIDAR data set collected in Milan (Italy) are discussed and validated against in situ data (from a balloon-borne optical particle counter). Finally a comparison of the observation-based MLH with relevant numerical simulations (mesoscale model MM5) is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncp219DOI Listing

Publication Analysis

Top Keywords

mixing layer
8
study atmospheric
4
atmospheric aerosols
4
aerosols mixing
4
lidar
4
layer lidar
4
lidar lidar
4
lidar laser
4
laser radar
4
radar active
4

Similar Publications

Identifying Predictors of Spatiotemporal Variations in Residential Radon Concentrations across North Carolina Using Machine Learning Analytics.

Environ Pollut

January 2025

Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.

Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.

View Article and Find Full Text PDF

Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.

View Article and Find Full Text PDF

MAX (MAX) phases are a novel class of materials with a closely packed hexagonal structure that bridge the gap between metals and ceramics, garnering tremendous research interest worldwide in recent years. Benefiting from their unique layered structure and mixed covalent-ionic-metallic bonding characteristics, MAX phase coatings possess excellent oxidation resistance, and exceptional electrical and thermal conductivities, making them highly promising for applications in advanced nuclear materials, battery plate protection materials, and aero-engine functional materials. This review aims to provide a comprehensive understanding of MAX phase coatings.

View Article and Find Full Text PDF

Background: To evaluate the 6-year physiological rates-of-change in ganglion cell inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thickness measured with optical coherence tomography.

Methods: We included 2202 out of 2661 subjects from the population-based Singapore Chinese Eye Study who returned for follow-up 6 years after baseline examination (follow-up rate 87.7%).

View Article and Find Full Text PDF

To determine longitudinal changes in the peripapillary retinal nerve fiber layer (pRNFL) thickness in type 2 diabetes mellitus (T2DM) patients with hypertension (HTN). Participants were divided into three groups: normal controls (Group 1), patients with T2DM (Group 2), and patients with both T2DM and HTN (Group 3). Following the initial examination, patients underwent three additional examinations at 1-year intervals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!