The assembly of multistep recombinant pathways in stably transformed plants is a cornerstone of crops producing new products yet can be a laborious and time-consuming process. Any heterologous expression platform capable of providing a rapid estimation of the functional assembly of an entire pathway would guide the design of such transgenic traits. In this study, we use a Nicotiana benthamiana transient leaf expression system to simultaneously express five genes, from five independent T(DNA) binary vectors, to assemble a complete recombinant pathway in five days. In this study, we demonstrate the production of long-chain polyunsaturated fatty acids (LC-PUFA) requiring five transgene-encoded reactions to convert endogenous fatty acids to LC-PUFA. The addition of a triacylglycerol assembly enzyme, Arabidopsis thaliana diacylglyceride-O-acyltransferase, and fractionation of the total lipid profile demonstrated that leaf oils contained 37% newly synthesised LC-PUFA, including 7% arachidonic acid (AA), 6% eicosopentaenoic acid and 3% docosahexaenoic acid. The calculation of enzymatic conversion efficiencies at each step of LC-PUFA synthesis suggests that this transient assembly of a complicated multistep pathway is highly efficient. Unlike experiments using stably transformed plants our assembly of an intricate pathway maintained full gene-for-gene interchangeability and required a fraction of the time and glasshouse space. Furthermore, an exogenous LC-PUFA fatty acid substrate, AA, was fed and metabolised by a transiently expressed Delta17-desaturase enzyme, and provided results similar to those obtained in yeast feeding experiments. Although the assay was ideal for LC-PUFA pathways, this assay format may become a powerful tool for the characterisation and step-wise improvement of other recombinant pathways and multigenic traits.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1467-7652.2009.00453.xDOI Listing

Publication Analysis

Top Keywords

recombinant pathways
12
multistep recombinant
8
stably transformed
8
transformed plants
8
fatty acids
8
acids lc-pufa
8
lc-pufa
6
assembly
5
leaf-based assay
4
assay interchangeable
4

Similar Publications

Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.

View Article and Find Full Text PDF

Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.

Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.

View Article and Find Full Text PDF

Lutropin/choriogonadotropin receptor (LH/CGR) is a member of the G protein-coupled receptor superfamily. LH/CGRs in fish and mammalian species have been reported to contain naturally occurring, constitutively activating, and inactivating mutations in highly conserved regions. The present study was designed to determine the functional aspect of eel LH/CGR signal transduction.

View Article and Find Full Text PDF

The plant shikimate pathway directs a significant portion of photosynthetically assimilated carbon into the downstream biosynthetic pathways of aromatic amino acids (AAA) and aromatic natural products. 3-Deoxy-d--heptulosonate 7-phosphate (DAHP) synthase (hereafter DHS) catalyzes the first step of the shikimate pathway, playing a critical role in controlling the carbon flux from central carbon metabolism into the AAA biosynthesis. Previous biochemical studies suggested the presence of manganese- and cobalt-dependent DHS enzymes (DHS-Mn and DHS-Co, respectively) in various plant species.

View Article and Find Full Text PDF

Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence.

J Nanobiotechnology

January 2025

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.

Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!