Simvastatin restores down-regulated GATA-6 expression in pulmonary hypertensive rats.

Exp Lung Res

Department of Pediatric Cardiology, West China Second University Hospital, University, Chengdu, Sichuan, China.

Published: June 2009

Vascular smooth muscle cell proliferation has been known to be predominant in vascular remodeling of pulmonary hypertensive. The GATA family proteins, a group of zinc finger transcription factors, play an important role during cell proliferation. The aim of present study was to investigate the expression of GATA-6 gene in experimental pulmonary hypertensive rats and explore the effect of regulation of GATA-6 expression by simvastatin on pulmonary vascular remodeling. The male Sprague-Dawley rats model was established with receiving pneumonectomy and monocrotaline (MCT) administration. Right pulmonary artery remodeling in these animals was compared with untreated rats or rats receiving simvastatin. The level of GATA-6 mRNA and protein expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Pneumonectomized, MCT-treated rats had significantly increased mean pulmonary arterial pressure (mPAP), RV/(LV + S) ratio (ratio of the right ventricular to left ventricular and septum weights), vascular occlusion scores (VOSs), and percent media wall thickness on day 35, all the indices were significantly decreased after simvastatin administration in these rats. The level of GATA-6 mRNA and protein were markedly decreased in these pneumonectomy and MCT-treated rats, and they were significantly up-regulated in these rats after receiving simvastatin. These results indicate that the development and progression of pulmonary hypertension is prevented by simvastatin by up-regulating GATA-6 expression in the lung tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707177PMC
http://dx.doi.org/10.1080/01902140902736819DOI Listing

Publication Analysis

Top Keywords

gata-6 expression
12
pulmonary hypertensive
12
rats
9
hypertensive rats
8
cell proliferation
8
vascular remodeling
8
rats receiving
8
receiving simvastatin
8
level gata-6
8
gata-6 mrna
8

Similar Publications

The polycomb protein complex interacts with GATA-6/PPARα to inhibit α-MHC expression.

Dev Growth Differ

December 2024

Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.

Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6.

View Article and Find Full Text PDF

Lactase persistence (LP) - the genetic trait that determines the continued expression of the enzyme lactase into adulthood - has undergone recent, rapid positive selection since the advent of animal domestication and dairying in some human populations. While underlying evolutionary explanations have been widely posited and studied, the molecular basis of LP remains less so. This review considers the genetic and epigenetic bases of LP.

View Article and Find Full Text PDF

Background: Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases.

View Article and Find Full Text PDF

Background: Endometriosis (EMs) is a common chronic inflammatory disease which is characterized by multiple clinical symptoms and high recurrence rate due to the absence of effective therapies. Huayu Jiedu Formula (HYJDF), is a traditional Chinese medicine prescription with five major herbs. It has been used as traditional medicine to treat EMs for more than twenty years and exerted a good therapeutic effect.

View Article and Find Full Text PDF

In vitro production (IVP) of equine embryos is increasingly popular in clinical practice but suffers from higher incidences of early embryonic loss and monozygotic twin development than transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM); (2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture environment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2 (EPI) and GATA-6 (PE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!