In this work, we combine atomistic molecular dynamics simulations with theoretical vibrational spectroscopy to study the properties of water confined inside bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. This approach is found to successfully reproduce the experimental spectra, rotational anisotropy decays, and spectral diffusion time-correlation functions as a function of micelle size. These results are interpreted in terms of water molecules in different hydrogen bonding environments. One interesting result from our simulation, not directly accessible experimentally, involves the distance from the surfactant headgroup/water interface over which the dynamical properties of water become bulk-like. We find that this distance varies with micelle size, casting doubt on the core/shell model. In particular, the distance increases with decreasing micelle size, and hence decreasing radius of curvature of the interface. We suggest that this arises from curvature-induced frustration. We also find that the dynamics in the smallest micelle studied is extremely slow--relaxation is still incomplete by 1 ns. As in other glassy systems with collective relaxation, our time-correlation functions can be fit to stretched exponentials, in this case with very small exponents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp906784t | DOI Listing |
J Sci Food Agric
January 2025
Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany.
Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.
View Article and Find Full Text PDFNat Chem
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field Company, Chengdu, 610213, Sichuan, China.
To address the challenge of reusing foaming agents in foam drainage gas production processes, we developed a redox-responsive surfactant with a straightforward preparation method based on molecular electrostatic interaction assembly. The redox response mechanism of the surfactant was investigated through surface tension, absorbance, particle size, and Zeta potential analyses. Results indicate that the minimum surface tension in the oxidized state can reach 26.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo 671-2201, Japan.
To prepare amphiphilic diblock copolymers (MP), a controlled radical polymerization approach was employed, incorporating hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) with hydrophobic poly(3-methoxypropyl acrylate) (PMPA). The synthesized diblock copolymers feature a PMPC block with a degree of polymerization (DP) of 100 and a PMPA block with DP (=) values of 171 and 552. The hydrophilic PMPC block exhibits biocompatibility, such as inhibition of platelet and protein adsorption, because of its hydrophilic pendant zwitterionic phosphorylcholine groups that have the same chemical structure as cell membrane surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!