Converging UV-vis, EPR, rRaman, and DFT calculations highlight the evolution of [Ru(4)(H(2)O)(4)(mu-O)(4)(mu-OH)(2)(gamma-SiW(10)O(36))(2)](10-), 1, to high-valent intermediates. In analogy with the natural enzyme, five different oxidation states, generated from 1, have been found to power the catalytic cycle for water oxidation. A high electrophilic tetraruthenium(V)-hydroxo species is envisaged as the competent intermediate, undergoing nucleophilic attack by an external water molecule as a key step in the formation of a new O-O bond under catalytic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja905067uDOI Listing

Publication Analysis

Top Keywords

water oxidation
8
oxidation tetraruthenate
4
tetraruthenate core
4
core stabilized
4
stabilized polyoxometalate
4
polyoxometalate ligands
4
ligands experimental
4
experimental computational
4
computational evidence
4
evidence trace
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!