Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200903897 | DOI Listing |
Chem Sci
December 2024
Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway.
The use of in vitro markers able to reproduce the in vivo permeability and diffusivity of orally administered drugs, could represent an innovative starting point for the formulation of delivery systems, in particular for low soluble and low permeable drugs belonging to BCS class II and IV. Considering the great interest in the green pharmaceutical approaches and the increasing use of natural molecules as novel therapeutic drugs, in this study, rutin, hesperidin and curcumin have been selected as lipophilic model drugs to investigate their possible enhancement of their permeability and bioavailability after oral administration. As the low solubility of the three drugs hinders their application, β-cyclodextrins (CD), amphiphilic natural moieties able to form stable inclusion complexes, have been considered to promote their solubilization.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, USA.
Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!