A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mathematical modelling of the acid-base chemistry and oxygenation of blood: a mass balance, mass action approach including plasma and red blood cells. | LitMetric

Mathematical models of the acid-base chemistry of blood based upon mass action and mass balance equations have become popular as diagnostic tools in intensive care. The reference models using this approach are those based on the strong ion approach, but these models do not currently take into account the effects of oxygen on the buffering characteristics of haemoglobin. As such these models are limited in their ability to simulate physiological situations involving simultaneous changes of O(2) and CO(2) levels in the blood. This paper describes a model of acid-base chemistry of blood based on mass action and mass balance equations and including the effects of oxygen. The model is used to simulate the mixing of venous blood with the same blood at elevated O(2) and reduced CO(2) levels, and the results compared with the mixing of blood sampled from 21 healthy subjects. Simulated values of pH, PCO(2), PO(2) and SO(2) in the mixed blood compare well with measured values with small bias (i.e. 0.000 pH, -0.06 kPa PCO(2), -0.1% SO(2), -0.02 kPa PO(2)), and values of standard deviations (i.e. 0.006 pH, 0.11 kPa PCO(2), 0.8% SO(2), 0.13 kPa PO(2)) comparable to the precision seen in direct measurement of these variables in clinical practice. These results indicate that the model can reliably simulate the mixing of blood and has potential for application in describing physiological situations involving the mixing of blood at different O(2) and CO(2) levels such as occurs in the mixing of lung capillary and shunted pulmonary blood.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-009-1244-xDOI Listing

Publication Analysis

Top Keywords

acid-base chemistry
12
blood
12
mass balance
12
mass action
12
co2 levels
12
mixing blood
12
chemistry blood
8
blood based
8
based mass
8
action mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!