Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mathematical models of the acid-base chemistry of blood based upon mass action and mass balance equations have become popular as diagnostic tools in intensive care. The reference models using this approach are those based on the strong ion approach, but these models do not currently take into account the effects of oxygen on the buffering characteristics of haemoglobin. As such these models are limited in their ability to simulate physiological situations involving simultaneous changes of O(2) and CO(2) levels in the blood. This paper describes a model of acid-base chemistry of blood based on mass action and mass balance equations and including the effects of oxygen. The model is used to simulate the mixing of venous blood with the same blood at elevated O(2) and reduced CO(2) levels, and the results compared with the mixing of blood sampled from 21 healthy subjects. Simulated values of pH, PCO(2), PO(2) and SO(2) in the mixed blood compare well with measured values with small bias (i.e. 0.000 pH, -0.06 kPa PCO(2), -0.1% SO(2), -0.02 kPa PO(2)), and values of standard deviations (i.e. 0.006 pH, 0.11 kPa PCO(2), 0.8% SO(2), 0.13 kPa PO(2)) comparable to the precision seen in direct measurement of these variables in clinical practice. These results indicate that the model can reliably simulate the mixing of blood and has potential for application in describing physiological situations involving the mixing of blood at different O(2) and CO(2) levels such as occurs in the mixing of lung capillary and shunted pulmonary blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-009-1244-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!