Background: Osteoporosis is a highly heritable trait. Many candidate genes have been proposed as being involved in regulating bone mineral density (BMD). Few of these findings have been replicated in independent studies.
Objective: To assess the relationship between BMD and fracture and all common single-nucleotide polymorphisms (SNPs) in previously proposed osteoporosis candidate genes.
Design: Large-scale meta-analysis of genome-wide association data.
Setting: 5 international, multicenter, population-based studies.
Participants: Data on BMD were obtained from 19 195 participants (14 277 women) from 5 populations of European origin. Data on fracture were obtained from a prospective cohort (n = 5974) from the Netherlands.
Measurements: Systematic literature review using the Human Genome Epidemiology Navigator identified autosomal genes previously evaluated for association with osteoporosis. We explored the common SNPs arising from the haplotype map of the human genome (HapMap) across all these genes. BMD at the femoral neck and lumbar spine was measured by dual-energy x-ray absorptiometry. Fractures were defined as clinically apparent, site-specific, validated nonvertebral and vertebral low-energy fractures.
Results: 150 candidate genes were identified and 36 016 SNPs in these loci were assessed. SNPs from 9 gene loci (ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, TNFRSF11B, and TNFSF11) were associated with BMD at either site. For most genes, no SNP was statistically significant. For statistically significant SNPs (n = 241), effect sizes ranged from 0.04 to 0.18 SD per allele. SNPs from the LRP5, SOST, SPP1, and TNFRSF11A loci were significantly associated with fracture risk; odds ratios ranged from 1.13 to 1.43 per allele. These effects on fracture were partially independent of BMD at SPP1 and SOST.
Limitation: Only common polymorphisms in linkage disequilibrium with SNPs in HapMap could be assessed, and previously reported associations for SNPs in some candidate genes could not be excluded.
Conclusion: In this large-scale collaborative genome-wide meta-analysis, 9 of 150 candidate genes were associated with regulation of BMD, 4 of which also significantly affected risk for fracture. However, most candidate genes had no consistent association with BMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842981 | PMC |
http://dx.doi.org/10.7326/0003-4819-151-8-200910200-00006 | DOI Listing |
BMC Genomics
January 2025
Department of Agricultural and Life Industry, Kangwon National University, Chuncheon, 2434, Republic of Korea.
Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Biology, University of York, York, YO10 5DD, UK.
Hypoxia is common in breast tumours and is linked to therapy resistance and advanced disease. To understand hypoxia-driven breast cancer progression, RT-qPCR is a widely used technique to quantify transcriptional changes that occur during malignant transformation. Reference genes (RGs) are endogenous RT-qPCR controls used to normalise mRNA levels, allowing accurate assessment of transcriptional changes.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Environmental and Life Sciences, Karlstad University, Karlstad 651 88, Sweden.
Recombination plays a key role in increasing the efficacy of selection. We investigate whether recombination can also play a role in resolving adaptive conflicts at loci coding for traits shared between the sexes. Errors during recombination events resulting in gene duplications may provide a long-term evolutionary advantage if those loci also experience sexually antagonistic (SA) selection since, after duplication, sex-specific expression profiles will be free to evolve, thereby reducing the load on population fitness and resolving the conflict.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China. Electronic address:
Male sterility in peach (Prunus persica L.), characterized by the absence of fertile pollen grains in the anther, is determined by a recessive allele in homozygosis of the major gene located on chromosome 6. Developing tightly linked molecular markers can help identify appropriate peach parents or male-sterile plants for early culling in segregating progenies, thereby increasing breeding efficiency.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Electronic address:
Zymomonas mobilis is an ethanologenic bacterium that has been used for over 1500 years to produce alcoholic beverages. Recently, this microbe has become a top candidate for biofuel production due to its efficient metabolism. Z.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!