Introduction: Mesenchymal stem cells (MSCs) have been used for clinical application in tissue engineering and regenerative medicine (TERM). To date, the most common source of MSCs has been bone marrow. However, the bone marrow aspirate is an invasive and painful procedure for the donor. Thus, the identification and characterization of alternative sources of MSCs are of great importance. This study focused on the characterization of stem cells from human exfoliated deciduous teeth (SHED) compared with dental pulp stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs).

Methods: We have compared "stemness" such as the proliferation rate and the expression of stem cell marker of DPSCs, SHED, and BMMSCs. In addition, gene expression profile of DPSCs and SHED were analyzed by using DNA microarray.

Results: All cells isolated from the three sources exhibited MSC characteristics including a fibroblastic morphology, and the expression of mesenchymal stem-cell markers. The proliferation rate of SHED was significantly higher than that of DPSCs and BMMSCs (P < 0.05). The comparison of the gene expression profiles indicated 4386 genes with a changed expression between DPSCs and SHED by 2.0-fold or more. Higher expression in SHED was observed for genes that participate in pathways related to cell proliferation and extracellular matrix, including several cytokines such as fibroblast growth factor and tumor growth factor beta.

Conclusions: Because of its advantages of a higher proliferation capability, abundant cell supply, and painless stem cell collection with minimal invasion, SHED could be a desirable option as a cell source for potential therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2009.07.024DOI Listing

Publication Analysis

Top Keywords

stem cells
20
stem cell
12
dental pulp
12
gene expression
12
stem
8
cell proliferation
8
human exfoliated
8
exfoliated deciduous
8
deciduous teeth
8
pulp stem
8

Similar Publications

The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Introduction: Chronic inflammation is a major risk factor for coronary artery disease (CAD). Currently, the inflammatory cardiovascular risk is assessed via C-reactive protein (CRP) levels measured using a high-sensitivity assay (hsCRP). Monomeric CRP (mCRP) is a locally produced form of CRP that has emerged as a potential biomarker of inflammation.

View Article and Find Full Text PDF

Neutrophil elastase () mutations are the most common cause of cyclic (CyN) and congenital neutropenia (SCN), two autosomal dominant disorders causing recurrent infections due to impaired neutrophil production. Granulocyte colony-stimulating factor (G-CSF) corrects neutropenia but has adverse effects, including bone pain and in some cases, an increased risk of myelodysplasia (MDS) and acute myeloid leukemia (AML). Hematopoietic stem cell transplantation is an alternative but is limited by its complications and donor availability.

View Article and Find Full Text PDF

A comprehensive review of challenges and opportunities for stem cell research in India.

Perspect Clin Res

August 2024

Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, UP, India.

Stem cell research is a major focus for scientific and medical communities worldwide due to the potential for stem cells to restore function lost due to disease, trauma, congenital abnormalities, and aging. Stem cells can repair, replace, or regenerate damaged cells, tissues, or organs, making them an important area of research in regenerative medicine. India is emerging as a prominent hub for the development of stem cell therapy (SCT), and it is important to assess the current state of stem cell research in India and the potential for advancement to promote stem cell-based therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!