Mesenchymal stem cell (MSC)-based cell therapy has shifted into clinical trials to repair the damage of various tissues. In this setting, the survival of the transplanted cells contributes critically to the therapeutic effectiveness. To investigate the in vivo tracing of MSCs, a recombinant retroviral vector carrying firefly-luciferase reporter gene [pL (FLUC) SN] was constructed and several GPE+86 cell clones that stably expressed fluc were selected. The retroviral supernatants were collected and used to transfect MSC derived from C57 mice. The cells were then screened with G418 and the expression of the exogenous gene was identified by luciferase enzyme activity analysis. Labeled mouse MSCs (2x10(6)) were injected into skeletal muscles, and the in situ expression was noninvasively tracked by in vivo bioluminescence imaging for 1, 3 and 6 days after transplantation. The results showed that the survival rates of the grafted cells dropped sharply with time, they were 57.2+/-11.7%, 8.6+/-2.5% and 5.4+/-3.1% on day 1, 3 and 6 after transplantation, and no fluorescent signals above background were detected on day 10. It is concluded that the method described above could be used for in vivo tracing of grafted cells. Furthermore, MSCs could not survive even transplanted into the none-ischemic skeletal muscles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vivo tracing
12
mesenchymal stem
8
skeletal muscles
8
grafted cells
8
cells
5
[in vivo
4
tracing transplanted
4
transplanted bone
4
bone marrow
4
marrow mesenchymal
4

Similar Publications

The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities.

View Article and Find Full Text PDF

Toxic Effects of Cobalt on Erythroid Progenitor Cells.

Chem Res Toxicol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).

View Article and Find Full Text PDF

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized via tricarboxylic acid (TCA) metabolism downstream of TLR signaling. Itaconate-based treatment strategies are being explored to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

Unlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!