Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

BMC Dev Biol

Institute of Developmental Biology and Molecular Medicine and School of Life Science, Fudan University, Shanghai, PR China.

Published: October 2009

Background: Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye.

Results: This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling.

Conclusion: In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773777PMC
http://dx.doi.org/10.1186/1471-213X-9-53DOI Listing

Publication Analysis

Top Keywords

drosophila eye
12
cell death
8
jnk signalling
8
raskp-induced apoptosis
8
apoptosis
7
ras
6
jnk
6
cell
5
ras promotes
4
promotes cell
4

Similar Publications

Drosophila Modulo is Essential for Transposon Silencing and Developmental Robustness.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:

Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3).

View Article and Find Full Text PDF

A longstanding challenge in biology is accurately analyzing images acquired using microscopy. Recently, machine learning (ML) approaches have facilitated detailed quantification of images that were refractile to traditional computation methods. Here, we detail a method for measuring pigments in the complex-mosaic adult eye using high-resolution photographs and the pixel classifier [1].

View Article and Find Full Text PDF

Unlabelled: The deubiquitinating enzyme BAP1, the catalytic subunit of the PR-DUB complex, is implicated in several cancers, in the familial cancer syndrome BAP1 Tumor Predisposition Syndrome, and in the neurodevelopmental disorder Küry -Isidor syndrome. In there are numerous reports in the literature describing developmental patterning phenotypes for several chromatin regulators including the discovery of Polycomb itself, but corresponding adult morphological phenotypes caused by developmental dysregulation of ortholog ( ) are less well-described. We report here that knockdown of in the eye and wing produce concomitant chromatin dysregulation phenotypes.

View Article and Find Full Text PDF

Aging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD) or reduced (NADH) states, which together form a key NADH/NAD redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process.

View Article and Find Full Text PDF

Background: Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!