The flow of carbon under sulfate-reducing conditions within a benzene-mineralizing enrichment culture was analysed using fully labelled [13C6]-benzene. Over 180 days of incubation, 95% of added 13C-benzene was released as 13C-carbon dioxide. DNA extracted from cultures that had degraded different amounts of unlabelled or 13C-labelled benzene was centrifuged in CsCl density gradients to identify 13C-benzene-assimilating organisms by density-resolved terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA gene fragments. Two phylotypes showed significantly increased relative abundance of their terminal restriction fragments in 'heavy' fractions of 13C-benzene-incubated microcosms compared with a 12C-benzene-incubated control: a member of the Cryptanaerobacter/Pelotomaculum group within the Peptococcaceae, and a phylotype belonging to the Epsilonproteobacteria. The Cryptanaerobacter/Pelotomaculum phylotype was the most frequent sequence type. A small amount of 13C-methane was aceticlastically produced, as concluded from the linear relationship between methane production and benzene degradation and the detection of Methanosaetaceae as the only methanogens present. Other phylotypes detected but not 13C-labelled belong to several genera of sulfate-reducing bacteria, that may act as hydrogen scavengers for benzene oxidation. Our results strongly support the hypothesis that benzene is mineralized by a consortium consisting of syntrophs, hydrogenotrophic sulfate reducers and to a minor extent of aceticlastic methanogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-2920.2009.02077.x | DOI Listing |
Front Immunol
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.
View Article and Find Full Text PDFLife Metab
April 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China.
Postnatal growth retardation (PGR) frequently occurs during early postnatal development of piglets and induces high mortality. To date, the mechanism of PGR remains poorly understood. Adipose tissue-derived microbes have been documented to be associated with several disorders of metabolism and body growth.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; University of Utah Spencer Fox Eccles School of Medicine.
(Pro)renin receptor (PRR) contains overlapping cleavage site for site-1 protease (S1P) and furin for generation of soluble PRR (sPRR). Although S1P-mediated cleavage mediates the release of sPRR, the functional implication of furin-mediated cleavage is unclear. Here we tested whether furin-mediated cleavage was required for the activity of sPRR in activating ENaC in cultured M-1 cells.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!