In this study, conventional fluorescence spectroscopy in the excitation, emission and synchronous scan modes and three-dimensional fluorescence spectroscopy in the form of excitation-emission matrix of fluorescence intensity as a function of excitation and emission wavelengths were applied to study the complexation between DOM extracted from landfill leachates and Hg(II) ions. The emission spectrum of DOM exhibited a broad peak with a center at 425 nm and a disorder change of the peak with increasing Hg(II) concentrations, which suggested that the structure of DOM was comparatively simple and the fluorescence character of DOM-Hg(II) complexes resulted from interaction of all fluorescence groups. The excitation spectrum of DOM showed that the intensities of two peaks at 392 and 458 nm both decreased with the addition of Hg(II), indicating that different sources, hydroxy and amido groups, were all involved in the DOM-Hg(II) complexation process. Synchronous-scan excitation spectra of DOM-Hg(II) complexation showed that Hg(II) not only produced fluorescence quenching effect, but also enhanced the rigid structure of DOM at a low concentration. The three-dimensional fluorescence spectra of DOM-Hg(II) showed that the peaks A and B reduced strongly and the two peaks tended to shift toward longer wavelength with the concentrations of Hg(II) increasing. These results indicated that protein-like matter reacted with Hg(II) and there was a charge-transfer transition either between energy level in its ligand and a mercury energy level or between two mercury energy levels at the same time. Besides, the decrease in fluorescence intensity of peaks C and D in three-dimensional fluorescence spectra suggested that carbonyl and carboxyl formed bonds with Hg(II) when DOM was complexed with Hg(II).

Download full-text PDF

Source

Publication Analysis

Top Keywords

three-dimensional fluorescence
12
fluorescence
9
fluorescence spectroscopy
8
excitation emission
8
fluorescence intensity
8
hgii
8
spectrum dom
8
structure dom
8
dom-hgii complexation
8
spectra dom-hgii
8

Similar Publications

Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.

View Article and Find Full Text PDF

Construction of reusable fluorescent assembled 3D-printed hydrogen-based models to simulate minimally invasive resection of complex liver cancer.

PLoS One

December 2024

Department of General Surgery, Cancer center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.

Complex liver cancer is often difficult to expose or dissect, and the surgery is often challenging. 3D-printed models may realistically present 3D anatomical structure, which has certain value in planning and training of liver surgery. However, the existing 3D-printed models are all monolithic models, which are difficult to reuse and limited in clinical application.

View Article and Find Full Text PDF

Advanced Imaging Techniques for Atherosclerosis and Cardiovascular Calcification in Animal Models.

J Cardiovasc Dev Dis

December 2024

Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.

The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.

View Article and Find Full Text PDF

Three-dimensional single-cell transcriptome imaging of thick tissues.

Elife

December 2024

Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Center for Brain Science, Harvard University, Cambridge, United States.

Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples.

View Article and Find Full Text PDF

To explore the source information and composition characteristics of dissolved organic matter (DOM) in different regions of water bodies in northern cities, considering the urban water system of Shijiazhuang, Hebei Province as an example, ultraviolet-visible spectroscopy (UV-vis) and three-dimensional fluorescence parallel factor analysis (EEM-PARAFAC) were used to explain the optical parameters, abundance, and proportion of different components of DOM in water bodies of different regions. The results showed that: ① The concentrations of NO-N, NO-N, NH-N, TN, TP, and COD in the upstream were significantly lower than those in urban water bodies and downstream (<0.01), and TSI increased after the water entered the city.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!