Microwave-promoted Fenton-like reaction, the combination of Fenton-like reagent with microwave, is an efficient method for waste water treatment. In the present paper, the degradation of rhodamine B (a kind of organic dye) using this method was studied. Through numerous experiments, the influences of various parameters including the initial pH value, reaction time, dosage of K2Cr2O7, dosage of H2O2 and microwave were investigated intensively. The characteristic curve of rhodamine B, the concentration-absorbency curve of rhodamine B, the orthogonal optimization tests and comparative tests were given. The mechanism of this reaction was also probed. It is concluded from the experiments that the microwave can accelerate the process of degradation effectively. Under optimal conditions, the overall color removal was more than 99.9% within 9 min. In the study, the method for characterization was entirely UV-Vis spectral analysis.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:
Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.
View Article and Find Full Text PDFTagging RNAs with fluorogenic aptamers has enabled imaging of transcripts in living cells, thereby revealing novel aspects of RNA metabolism and dynamics. While a diverse set of fluorogenic aptamers has been developed, a new generation of aptamers are beginning to exploit the ring-opening of spirocyclic rhodamine dyes to achieve robust performance in live mammalian cells. These fluorophores have two chemical states: a colorless, cell-permeable spirocyclic state and a fluorescent zwitterionic state.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Construction and Ecology, Shantou Polytechnic Shantou 515078 Guangdong China
This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.
View Article and Find Full Text PDFHeliyon
January 2025
Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
Recent advancements in nanoscience underscore the transformative potential of nanomaterials in environmental and biological applications. In this study, we synthesized gold nanoparticles (Au@ NPs) using an eco-friendly and cost-effective approach, leveraging peel extract as both a capping and reducing agent. This method presents a sustainable alternative to traditional chemical agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!