Structure characterization of lipocyclopeptide antibiotics, aspartocins A, B & C, by ESI-MSMS and ESI-nozzle-skimmer-MSMS.

J Mass Spectrom

Wyeth Research, Chemical Technologies Section, Chemical Sciences Division, 401 N. Middletown Road, Pearl River, NY 10965, USA.

Published: December 2009

Three lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI-MS, ESI-Nozzle Skimmer-MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1-FA)-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11]. They differ only in the fatty acid side chain moiety (FA) corresponding to (Z)-13-methyltetradec-3-ene-carbonyl, (+,Z)-12-methyltetradec-3-ene-carbonyl and (Z)-12-methyltridec-3-ene-carbonyl for aspartocins A (1), B (2), and C (3), respectively. All of the sequence ions were observed by ESI-MSMS of the doubly charged parent ions. However, a number of the sequence ions observed were of low abundance. To fully sequence the lipocyclopeptide antibiotic structures, these low abundance sequence ions together with complementary sequence ions were confirmed by ESI-Nozzle-Skimmer-MSMS of the singly charged linear peptide parent fragment ions H-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11-Dab2(1+)-Asp1-FA. Cyclization of the aspartocins was demonstrated to occur via the beta-amino group of Dab2 from ions of moderate intensity in the ESI-MSMS spectra. As the fatty acid moieties do not undergo internal fragmentations under the experimental ESI mass spectral conditions used, the 14 Da mass difference between the fatty acid moieties of aspartocins A (1) and B (2) versus aspartocin C (3) was used as an internal mass tag to differentiate fragment ions containing fatty acid moieties and those not containing the fatty acid moieties. The most numerous and abundant fragment ions observed in the tandem mass spectra are due to the cleavage of the tertiary nitrogen amide of the pipecolic acid residue-3 (16 fragment ions) and the proline residue-11 (7 fragment ions). In addition, the neutral loss of ethanimine from alpha,beta-diaminobutyric acid residue 9 was observed for the parent molecular ion and for 7 fragment ions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.1677DOI Listing

Publication Analysis

Top Keywords

fragment ions
24
fatty acid
20
sequence ions
16
acid moieties
16
ions
12
ions observed
12
lipocyclopeptide antibiotics
8
antibiotics aspartocins
8
low abundance
8
acid
7

Similar Publications

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Unraveling the in vivo pharmacokinetic behavior of mPEG-NH polymer in rats by UHPLC-MS/MS assay.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China. Electronic address:

As an important chemical reagent, methoxy polyethylene glycol amine (mPEG-NH) is widely used in biomedical field. Unraveling the pharmacokinetic behavior of mPEG-NH polymers is essential for revealing the toxicity and efficiency of mPEG-NH related drug delivery systems. In this study, a simple analytical assay based on mass spectrometry (MS) was first established and validated for quantification of mPEG-NH in biological matrix.

View Article and Find Full Text PDF

UHPLC-TIMS-PASEF-MS for Lipidomics: From Theory to Practice.

Methods Mol Biol

January 2025

Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.

Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.

View Article and Find Full Text PDF

Qualitative confirmation of 30 phencyclidine analogs in human blood and urine using GC-HRMS and a self-built library search.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai 200063 China. Electronic address:

Introduction: Phencyclidine, a dissociative anesthetic with hallucinogenic effects, is commonly abused as a recreational drug. Phencyclidine analogs are compounds produced by substitutions of the phenyl and piperidine rings of phencyclidine. Illegal use of phencyclidine and its analogs has symptoms such as addiction, confusion, and increased tendencies toward violence.

View Article and Find Full Text PDF

[Serum pharmacochemistry of Panacis Japonici Rhizoma extract based on UPLC-Q-Exactive Orbitrap-MS].

Zhongguo Zhong Yao Za Zhi

December 2024

Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.

In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!