Treatment of intracranial tumoral lesions is related to its correct histological diagnostic. We present a retrospective analysis of 32 patients submitted to 36 cerebral biopsies using neuronavigation and 44 patients using frame-based stereotaxy. Mean age was 46.6 and 49.3 years old respectively. Sex distribution in both groups was 50% for each. Most of lesions were lobar in both groups. Diagnostic yielding was 91.7% and 83.4%, respectively (p=0.26). We found in the postoperative CT scans intracranial hemorrhages in 13.8% cases of the first group and 9.8% cases in the second. Most of them were mild post-operative hemorrages in the biopsy site. There was one death related to the procedure in each group. Astrocytomas and metastatic adenocarcinomas were the most frequent diagnosis. Diagnostic yielding and the number of postoperative hemorrhage and death were similar on both groups and the same found in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0004-282x2009000500018DOI Listing

Publication Analysis

Top Keywords

frame-based stereotaxy
8
diagnostic yielding
8
cerebral biopsy
4
biopsy comparison
4
comparison frame-based
4
stereotaxy neuronavigation
4
neuronavigation oncology
4
oncology center
4
center treatment
4
treatment intracranial
4

Similar Publications

Introduction Cerebellar deep brain stimulation (DBS) is gaining traction as a potential treatment for movement disorders and stroke and there is renewed interest in the cerebellum as a target for neuromodulation. Despite the safety and accuracy of frame-based approaches to the posterior fossa, unconventional stereotactic frame placement may be necessary to allow for low posterior fossa trajectories. Current literature lacks a comprehensive protocol detailing inverted frame placement and targeting.

View Article and Find Full Text PDF

Background: MR-guided stereotaxy has emerged as a viable alternative to CT-guided frame-based or frameless approaches. By offering direct MR-guided navigation, this technique addresses most limitations inherent to CT navigation, enabling submillimeter precision.

Method: We detail the workflow of using the ClearPoint® MR navigation system for laser catheter placement in the treatment of a hypothalamic hamartoma.

View Article and Find Full Text PDF

Background: Brain biopsy is required for the accurate specification and further diagnosis of intracranial findings. The conventional stereotactic frames are used clinically for biopsies and offer the highest possible precision. Unfortunately, they come with some insurmountable technical and logistical limitations.

View Article and Find Full Text PDF

Background And Objectives: Treatment-resistant depression is a leading cause of disability. Our center's trial for neurosurgical intervention for treatment-resistant depression involves a staged workup for implantation of a personalized, closed-loop neuromodulation device for refractory depression. The first stage ("stage 1") of workup involves implantation of 10 stereoelectroencephalography (SEEG) electrodes bilaterally into 5 anatomically defined brain regions and involves a specialized preoperative imaging and planning workup and a frame-based operating protocol.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is a neurosurgical procedure that depends on high-accuracy targeting of structures to implant electrodes within the brain. The positioning of these electrodes in the brain determines the long-term efficacy of treating diseases such as Parkinson's disease, essential tremor, or dystonia. Misplaced electrodes in DBS can lead to poor efficacy and stimulation-induced side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!