Characteristics of a waveguide mode in a trilayer Ag/SiO(2)/Au plasmonic thermal emitter.

Opt Lett

Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University,Taipei, Taiwan, China.

Published: October 2009

A suitably designed trilayer Ag/SiO(2)/Au thermal emitter can be used as the narrow bandwidth infrared light source. The thermal radiation generated in the SiO(2) layer resonates between the two metal films and results in not only the Ag/SiO(2) surface plasmon polaritons but also the waveguide mode (WM) in the Ag/SiO(2)/Au structure owing to the thick SiO(2) layer. This study investigated the influence of dielectric thickness on energy dispersion relations and derived the theoretical dispersion relation, which fit well with experimental results. This WM light source can be applied in the area of gas sensing and probing the response of the animal cells and plants to infrared radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.34.003089DOI Listing

Publication Analysis

Top Keywords

waveguide mode
8
trilayer ag/sio2/au
8
thermal emitter
8
light source
8
sio2 layer
8
characteristics waveguide
4
mode trilayer
4
ag/sio2/au plasmonic
4
plasmonic thermal
4
emitter suitably
4

Similar Publications

Invariance of the speckle pattern of the transmitted wave in periodic waveguides.

Sci Rep

January 2025

Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France.

We report on conditions of invariance of the transmitted pattern in the propagation through a periodic waveguide, the incident wave having no effect on the intensity pattern of the transmitted field. This phenomenon is reminiscent of that observed when illuminating a disordered medium in the regime of Anderson localization, as a consequence of the contribution of a single transmission eigenchannel to the transmitted wave. It is shown that the freezing of the transmitted wave is not intrinsically related to the disorder and that, whatever the frequency, it can also be observed in a regular, periodic system, provided that at most one Bloch mode is propagating.

View Article and Find Full Text PDF

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

Efficient Second Harmonic Generation via Plasmonic-Photonic Mode Matching in Hybrid Waveguide.

Nano Lett

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

Hybrid nonlinear plasmonic waveguides, characterized by a small mode area and large nonlinear susceptibility, present an intriguing and practical platform for the minimization of nonlinear photonic devices. Nevertheless, the intrinsic Ohmic loss associated with surface plasmon polaritons (SPPs) and modal dispersion imposes constraints on the effective interaction length and, consequently, the ultimate efficiency of nonlinear processes. In this study, we demonstrate an efficient second harmonic generation (SHG) within a hybrid plasmonic waveguide by leveraging SPP-like modes at the fundamental wave and photonic-like modes at the SHG under phase matching conditions.

View Article and Find Full Text PDF

Underwater sound propagation over a layered seabed with weak shear rigiditya).

J Acoust Soc Am

January 2025

Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.

The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.

View Article and Find Full Text PDF

We report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!