AI Article Synopsis

  • Systems biology sees biological functions as emerging from the interactions within dynamic networks of elements, particularly focusing on protein complexes and their arrangement within cells.
  • 'Visual proteomics' aims to map these complexes inside living cells using techniques like cryo-electron tomography and quantitative mass spectrometry.
  • The study introduces a scoring function for assessing visual proteomics, evaluates its accuracy, and discusses the limitations and future enhancements of this approach.

Article Abstract

Systems biology conceptualizes biological systems as dynamic networks of interacting elements, whereby functionally important properties are thought to emerge from the structure of such networks. Owing to the ubiquitous role of complexes of interacting proteins in biological systems, their subunit composition and temporal and spatial arrangement within the cell are of particular interest. 'Visual proteomics' attempts to localize individual macromolecular complexes inside of intact cells by template matching reference structures into cryo-electron tomograms. Here we combined quantitative mass spectrometry and cryo-electron tomography to detect, count and localize specific protein complexes in the cytoplasm of the human pathogen Leptospira interrogans. We describe a scoring function for visual proteomics and assess its performance and accuracy under realistic conditions. We discuss current and general limitations of the approach, as well as expected improvements in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862215PMC
http://dx.doi.org/10.1038/nmeth.1390DOI Listing

Publication Analysis

Top Keywords

visual proteomics
8
human pathogen
8
pathogen leptospira
8
leptospira interrogans
8
biological systems
8
proteomics human
4
interrogans systems
4
systems biology
4
biology conceptualizes
4
conceptualizes biological
4

Similar Publications

Chemoproteomic Profiling of Clickable Fumarate Probes for Target Identification and Mechanism of Action Studies.

ACS Chem Biol

January 2025

Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.

Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.

View Article and Find Full Text PDF

The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.

View Article and Find Full Text PDF

The study presents a detailed examination and follow-up of a Slovenian patient with an Leber Hereditary Optic Neuropathy (LHON)-like phenotype and bilateral optic neuropathy in whom genetic analysis identified a novel variant :m.15309T>C (Ile188Thr). We provide detailed analysis of the clinical examinations of a male patient with bilateral optic neuropathy from the acute stage to 8 years of follow-up.

View Article and Find Full Text PDF

Sexual signals in animals encompass a variety of forms including visual, acoustic, and chemical signals that are fundamental for intra- and interspecific communication, including sexual selection processes. Among these, odor signals play a critical role. Chemical compounds involved in sexual signaling vary in nature, with lipids and proteins being particularly important.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!