Although acoustic communication is an integral part of cichlid behaviour, its mechanism has never been identified before. In the present study, a combination of approaches was used to investigate the sound-producing mechanism of Oreochromis niloticus. Synchronisation of high-speed video data (500 frames s(-1)) and cineradiographies (250 frames s(-1)) with the sound recordings made it possible to locate the different body parts involved in sound production in territorial males. Sounds are made during a backward movement of the pelvic and pectoral girdles and a forward movement of the second pterygiophore of the anal fin. Various electrostimulation experiments, dissections and observation of histological cross-sections revealed a set of bundles (that we call the vesica longitudinalis) situated in the hypaxial musculature, ventro-laterally to the swimbladder. Contraction of these bundles should result in compression of the rib cage and also of the swimbladder, because of its close association with the serosa and ribs. Deflation of the swimbladder resulted in a reduced sound intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.032946DOI Listing

Publication Analysis

Top Keywords

sound production
8
oreochromis niloticus
8
frames s-1
8
potential mechanism
4
sound
4
mechanism sound
4
production oreochromis
4
niloticus cichlidae
4
cichlidae acoustic
4
acoustic communication
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.

View Article and Find Full Text PDF

Ultrasound-Assisted Enzymatic Extraction of the Active Components from Stem and Bioactivity Comparison with .

Molecules

January 2025

Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, China.

(ASC) contains a variety of bioactive compounds and serves as an important traditional Chinese medicinal resource. However, its prolonged growth cycle and reliance on wild populations limit its practical use. To explore the potential of (ASF) as an alternative, this study focused on optimizing the extraction process and assessing the bioactivity of stem extracts.

View Article and Find Full Text PDF

L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of have been widely utilized in traditional medicine, underscoring its important role in local healing practices.

View Article and Find Full Text PDF

Speech disorders encompass a complex interplay of neuroanatomical, genetic, and environmental factors affecting individuals' communication ability. This review synthesizes current insights into the neuroanatomy, genetic underpinnings, and environmental influences contributing to speech disorders. Neuroanatomical structures, such as Broca's area, Wernicke's area, the arcuate fasciculus, and basal ganglia, along with their connectivity, play critical roles in speech production, comprehension, and motor coordination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!