IL-8 produced by prostate cancer cells may be responsible for the androgen-independent growth of advanced prostate cancers. Accumulating evidence from microarray analyses and animal genetic models highlights the central involvement of the transcription factor early growth response-1 (EGR-1) in prostate carcinoma progression. It is unknown, however, whether knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated tumor metastasis. Here we show that EGR-1 knockdown by a specific shRNA-Egr1 inhibited gene transcription and production of IL-8 by the human prostate cancer cell line DU145. Conversely, enforced expression of EGR-1 in EGR-1-lacking PC3 prostate cancer cells markedly enhanced IL-8 transcription and secretion. By using wild type and a series of mutant IL-8 promoter luciferase constructs, we found that the NF-kappaB binding site is important for EGR-1 regulation of IL-8. Furthermore, silencing EGR-1 suppressed a synergistically functional interaction between EGR-1 and NF-kappaB. Consequently, knockdown of EGR-1 inhibited IL-8-mediated tumor colony formation and invasion. Thus, targeted knockdown of EGR-1 could be an effective therapeutic approach against prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787322PMC
http://dx.doi.org/10.1074/jbc.M109.016246DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
knockdown egr-1
16
cancer cells
12
egr-1
10
targeted knockdown
8
egr-1 inhibits
8
inhibits il-8
8
il-8 production
8
production il-8-mediated
8
il-8-mediated tumor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!