The joint deformity that arises as a result of Charcot neuroarthropathy, leads to gait modification. Ulceration risk associated with the deformity is generally assessed by measuring plantar pressure magnitude (PPM). However, as PPM is partially dependent on gait speed and treatment interventions may impact speed, the use of PPM to validate treatment is not ideal. This study suggests a novel assessment protocol, which is speed independent and can objectively (1) characterize abnormality in dynamic plantar loading in patients with foot Charcot neuroarthropathy and (2) screen improvement in dynamic plantar loading after foot reconstruction surgery. To examine whether the plantar pressure distribution (PPD) measured using EMED platform, was normal, a customized normal distribution curve was created for each trial. Then the original PPD was fitted to the customized normal distribution curve. This technique yields a regression factor (RF), which represents the similarity of the actual pressure distribution with a normal distribution. RF values may range from negative 1 to positive 1 and as the value increases positively so does the similarity between the actual and normalized pressure distributions. We tested this novel score on the plantar pressure pattern of healthy subjects (N=15), Charcot patients pre-operation (N=4) and a Charcot patient post-foot reconstruction (N=1). In healthy subjects, the RF was 0.46+/-0.1. When subjects increased their gait speed by 29%, PPM was increased by 8% (p<10(-5)), while RF was not changed (p=0.55), suggesting that RF value is independent of gait speed. In preoperative Charcot patients, the RF<0, however, RF increased post-surgery (RF=0.42), indicating a transition to normal plantar distribution after Charcot reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2009.09.003DOI Listing

Publication Analysis

Top Keywords

plantar pressure
16
charcot neuroarthropathy
12
dynamic plantar
12
normal distribution
12
gait speed
8
plantar loading
8
pressure distribution
8
customized normal
8
distribution curve
8
similarity actual
8

Similar Publications

Purpose: Plantar soft tissue properties affect foot biomechanics during movement. This study aims to explore the relationship between plantar pressure features and soft tissue stiffness through interpretable neural network model. The findings could inform orthotic insole design.

View Article and Find Full Text PDF

Motion analysis for the evaluation of dynamic spasticity during walking: A systematic scoping review.

Mult Scler Relat Disord

January 2025

Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China. Electronic address:

Background: Three-dimensional (3D) gait analysis has the potential to assess dynamic spasticity (DS). However, little is known about which parameters can be utilized for assessment.

Objective: To evaluate the application of 3D gait analysis in assessing DS during walking and to identify the most relevant parameters for clinical practice.

View Article and Find Full Text PDF

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed.

View Article and Find Full Text PDF

Background: The goal of this study was to examine the effects of spinal cord stimulation (SCS) on muscle activity during walking after lower-limb amputation. Amputation results in a loss of sensory feedback and alterations in gait biomechanics, including co-contractions of antagonist muscles about the knee and ankle, and reduced pelvic obliquity range-of-motion and pelvic drop. SCS can restore sensation in the missing limb, but its effects on muscle activation and gait biomechanics have not been studied in people with lower-limb amputation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!