We have optimized the analytical parameters of a homemade instrument for the simultaneous measurement of the chlorofluorocarbons CCl(2)F(2) (CFC-12), CCl(3)F (CFC-11) and C(2)Cl(3)F(3) (CFC-113) in seawater. Seawater samples are flame sealed into 60 ml glass ampoules avoiding any contact with the atmosphere and stored in cold, dark condition until analysis. In the laboratory, after cracking the ampoule in an enclosed chamber filled with ultra-pure nitrogen, the seawater sample is transferred to a stripping chamber, where ultra-pure nitrogen is used to purge the dissolved CFCs from the seawater. The extracted gases are then cryogenically trapped, subsequently the trap is isolated and heated and the CFCs are transferred by a carrier gas stream into a precolumn and then are separated on a gaschromatographic packed column. To separate adequately CFC-12 from N(2)O, during the early part of the chromatographic run, the gas stream passes through a molecular sieve, which is then isolated and backflushed. The CFCs are detected on an electron capture detector ((63)Ni ECD). After a careful choice of the experimental conditions, the performances of the system were evaluated. The detection limits for seawater samples are: 0.0081 pmol kg(-1) for CFC-12, 0.0073 pmol kg(-1) for CFC-11 and 0.0043 pmol kg(-1) for CFC-113. The reproducibility of replicate samples lies within 5% for the three CFCs. The system has been successfully employed for CFC measurements in seawater samples collected in the Ross Sea (Antarctica) in the framework of the Italian Antarctic research project.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2009.08.021DOI Listing

Publication Analysis

Top Keywords

seawater samples
16
pmol kg-1
12
cfc-113 seawater
8
ultra-pure nitrogen
8
gas stream
8
seawater
7
samples
5
simultaneous determination
4
determination cfc-11
4
cfc-12
4

Similar Publications

Ways to Measure Metals: From ICP-MS to XRF.

Curr Environ Health Rep

January 2025

School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.

Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.

View Article and Find Full Text PDF

The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.

View Article and Find Full Text PDF

The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!