Sulfated polysaccharides exerted potential biological property which was relative to degree of sulfation (DS), M(w), substitution position and chain conformation. In the present study, commercial guar gum was purified and its sulfated derivates with different DS and M(w) were synthesized. FT-IR and 13C NMR analysis indicated that C-6 substitution was predominant in sulfated samples compared with other positions. In the sulfation reaction, a sharp decrease in M(w) was observed. The d(f) values from 1.92 to 2.85 indicated that the -SO3H groups led to the relatively expanded conformation of sulfated polysaccharides. Antioxidant assays showed that sulfated polysaccharides had better antioxidant activities. The data obtained in in vitro models indicated that high DS and low M(w) showed the best antioxidant capacities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2009.10.004 | DOI Listing |
Glycoconj J
January 2025
School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
Chondroitin sulphate (CS) is a sulphated glycosaminoglycan (GAG) polysaccharide found on proteoglycans (CSPGs) in extracellular and pericellular matrices. Chondroitinase ABC (CSase ABC) derived from Proteus vulgaris is an enzyme that has gained attention for the capacity to cleave chondroitin sulphate (CS) glycosaminoglycans (GAG) from various proteoglycans such as Aggrecan, Neurocan, Decorin etc. The substrate specificity of CSase ABC is well-known for targeting various structural motifs of CS chains and has gained popularity in the field of neuro-regeneration by selective degradation of CS GAG chains.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
November 2024
Kunming Medical University Affiliated Yan'an Hospital Intensive Care Unit, Kunming City, Yunnan Province, China. 650051.
This study aimed to explore the relationship between the changes in early degradation products of polysaccharide coatings (such as hyaluronic acid (HA), syndecan-1 (SDC-1), and heparan sulfate (HS)) and the development of organ dysfunction in sepsis patients. We conducted a retrospective analysis on 140 sepsis patients admitted from January 2021 to June 2022, who formed the study group; 100 healthy individuals who underwent health checks during the same period were included as the control group. The study found that the expression levels of HA, SDC-1, and HS upon admission and within 24 hours of admission in sepsis patients, as well as the early change rates, were positively correlated with organ dysfunction (P < 0.
View Article and Find Full Text PDFElife
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Parasitic helminths secrete extracellular vesicles (EVs) into their host tissues to modulate immune responses, but the underlying mechanisms are poorly understood. We demonstrate that Ascaris EVs are efficiently internalised by monocytes in human peripheral blood mononuclear cells and increase the percentage of classical monocytes. Furthermore, EV treatment of monocytes induced a novel anti-inflammatory phenotype characterised by CD14, CD16, CC chemokine receptor 2 (CCR2) and programmed death-ligand 1 (PD-L1) cells.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!