The epibranchial placodes generate the neurons of the geniculate, petrosal, and nodose cranial sensory ganglia. Previously, it has been shown that bone morphogenetic proteins (BMPs) are involved in the formation of these structures. However, it has been unclear as to whether BMP signalling has an ongoing function in directing the later development of the epibranchial placodes, and how this signalling is regulated. Here, we demonstrate that BMPs maintain placodal neurogenesis and that their activity is modulated by a member of the Cerberus/Dan family of BMP antagonists, Protein Related to Dan and Cerberus (PRDC). We find that Bmp4 is expressed in the epibranchial placodes while Bmp7 and PRDC are expressed in the pharyngeal pouches. The timing and regional expression of these three genes suggest that BMP7 is involved in inducing placode neurogenesis and BMP4 in maintaining it and that BMP activity is modulated by PRDC. To investigate this hypothesis, we have performed both gain- and loss- of-function experiments with PRDC and find that it can modulate the BMP signals that induce epibranchial neurogenesis: a gain of PRDC function results in a loss of Bmp4 and hence placode neurogenesis is inhibited; conversely, a loss of PRDC function induces ectopic Bmp4 and an expansion of placode neurogenesis. This modulation is therefore necessary for the number and positioning of the epibranchial neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2009.10.013 | DOI Listing |
Dev Dyn
October 2024
Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA.
Ann Anat
October 2024
Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany. Electronic address:
Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro.
View Article and Find Full Text PDFBackground: The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure.
View Article and Find Full Text PDFDev Biol
November 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. Electronic address:
Genes (Basel)
February 2024
Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 200057, USA.
Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!