Background: Human MST/hSAV/LATS/hMOB tumor suppressor cascades are regulators of cell death and proliferation; however, little is known about other functions of MST/hMOB signaling. Mob1p, one of two MOB proteins in yeast, appears to play a role in spindle pole body duplication (the equivalent of mammalian centrosome duplication). We therefore investigated the role of human MOB proteins in centrosome duplication. We also addressed the regulation of human centrosome duplication by mammalian serine/threonine Ste20-like (MST) kinases, considering that MOB proteins can function together with Ste20-like kinases in eukaryotes.
Results: By studying the six human MOB proteins and five MST kinases, we found that MST1/hMOB1 signaling controls centrosome duplication. Overexpression of hMOB1 caused centrosome overduplication, whereas RNAi depletion of hMOB1 or MST1 impaired centriole duplication. Significantly, we delineated an hMOB1/MST1/NDR1 signaling pathway regulating centrosome duplication. More specifically, analysis of shRNA-resistant hMOB1 and NDR1 mutants revealed that a functional NDR/hMOB1 complex is critical for MST1 to phosphorylate NDR on the hydrophobic motif that in turn is required for human centrosome duplication. Furthermore, shRNA-resistant MST1 variants revealed that MST1 kinase activity is crucial for centrosome duplication whereas MST1 binding to the hSAV and RASSF1A tumor suppressor proteins is dispensable. Finally, by studying the PLK4/HsSAS-6/CP110 centriole assembly machinery, we also observed that normal daughter centriole formation depends on intact MST1/hMOB1/NDR signaling, although HsSAS-6 centriolar localization is not affected.
Conclusions: Our observations propose a novel pathway in control of human centriole duplication after recruitment of HsSAS-6 to centrioles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2009.09.020 | DOI Listing |
Leukemia
December 2024
Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML).
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
Drastic changes in chromosome number and cellular contents upon ploidy alterations profoundly affect the stability of mitotic regulation in different biological and pathological processes. Isogenic ploidy series of somatic cell lines are useful for studying the effects of ploidy differences on mitotic regulation at cellular and molecular levels. This chapter describes experimental procedures using isogenic human HAP1 cell lines that cover haploid, diploid, and tetraploid states.
View Article and Find Full Text PDFbioRxiv
October 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
The conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion.
View Article and Find Full Text PDFSci Adv
November 2024
Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
Centrosomes are membrane-less organelles that orchestrate a wide array of biological functions by acting as microtubule organizing centers. Here, we report that caspase-2-driven apoptosis is elicited in blood cells failing cytokinesis and that extra centrosomes are necessary to trigger this cell death. Activation of caspase-2 depends on the PIDDosome multi-protein complex, and priming of PIDD1 at extra centrosomes is necessary for pathway activation.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Pharmacology, University of Washington, Seattle, WA 98195.
Copy number variation (CNV) in the 16p11.2 (BP4-BP5) genomic locus is strongly associated with autism. Carriers of 16p11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!