Developing cost-effective methods for high throughput production of recombinant baculoviruses in insect cells is very challenging, because the baculovirus DNA preparation and the following transfection procedure are labour-intensive and time consuming. We developed a new method of introducing recombinant Bacmid DNA from bacteria into insect cells simply using invasive diaminopimelate (DAP) auxotrophic Escherichia coli to infectSpodoptera frugiperda 9 cells. The E. coli cells with recombinant Bacmids enter insect cells with the help of the invasion factor from Yersinia pseudotubercolusis. Without DAP in medium, the cell wall of DAP auxotrophic E. coli cannot be synthesized so that the bacterial cell will disrupt and release recombinant Bacmid. The released Bacmids will generate infective recombinant baculovirus particles in insect cells. We combined this E. coli invasion method with the zero background transposition system to generate recombinant baculovirus in a rapid and simple way. Without preparation and purification of recombinant Bacmids from E. coli and the labour-intensive and complex transfection procedure, this transfection reagent free method enables a convenient and economic high throughput production of recombinant baculoviruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2009.10.003 | DOI Listing |
Nat Commun
January 2025
Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.
View Article and Find Full Text PDFEnvironmental temperature dictates the developmental pace of poikilothermic animals. In , slower development at lower temperatures results in higher brain connectivity, but the generality of such scaling across temperatures and brain regions and its impact on function are unclear. Here, we show that brain connectivity scales continuously across temperatures, in agreement with a first-principle model that postulates different metabolic constraints for the growth of the brain and the organism.
View Article and Find Full Text PDFPLoS Biol
January 2025
Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.
Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Bacterial-fungal interaction (BFI) has significant implications for the health of host plants. While the diffusible antibiotic metabolite-mediated competition in BFI has been extensively characterized, the impact of intercellular contact remains largely elusive. Here, we demonstrate that the intercellular contact is a prevalent mode of interaction between beneficial soil bacteria and pathogenic filamentous fungi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!