Background: One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive.These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels.The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput.

Results: An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper.

Conclusion: This automated process allows laboratories to discover DNA variations in a short time and at low cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781300PMC
http://dx.doi.org/10.1186/1471-2156-10-66DOI Listing

Publication Analysis

Top Keywords

mutation detection
8
direct sequencing
8
muscular dystrophy
8
individual assay
8
diagnostic testing
8
gene family
8
family genes
8
automated process
8
genes
6
gene
6

Similar Publications

Purpose: Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the tumorigenesis and progression of various cancers. However, the functional roles of lncRNAs in papillary thyroid cancer (PTC) remain unclear. In this study, we investigated the functional role of the lncRNA FAM111A-DT in PTC progression and the underlying mechanisms.

View Article and Find Full Text PDF

Mechanism of female CHH caused by compound heterozygous mutations in the LHB gene.

J Assist Reprod Genet

January 2025

Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences, School of Basic Medicine, Center of Excellence in Tissue Engineering of Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory, PekingBeijing, 100730, China.

Background: Luteinizing hormone (LH) plays a crucial role in the postnatal development and maturation of gonads. Inactivating mutations of the luteinizing hormone beta subunit (LHB)gene are extremely rare and can result in congenital hypogonadotropic hypogonadism (CHH).

Methods: We conducted DNA sequencing on an 18-year-old female patient with undetectable LH and clinical symptoms of CHH.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Plasma tau phosphorylated at threonine 231 (p-tau231) is a promising novel biomarker of emerging Alzheimer's disease (AD) pathology. We aimed to characterize cross-sectional and longitudinal plasma p-tau231 measurements and estimated ages of biomarker onset in an exceptionally large number of presenilin (PSEN1) E280A (Glu280Ala) mutation carriers and age-matched non-carriers from the Colombian autosomal dominant Alzheimer's disease kindred.

Method: We included a cohort of 722 PSEN1 E280A mutation carriers (mean age 36.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.

Background: [F]FDG PET is essential since it allows us to differentiate between different dementia disorders/types, revealing distinct neurodegenerative patterns in those predisposed to the condition. Individuals with Autosomal Dominant Alzheimer's Disease (ADAD) have a predictable age of onset, enabling the study of cognitive and pathological changes before clinical manifestation. Our objective was to investigate temporal course and regional links between cognition and glucose metabolism as a measure of early synaptic impairment in ADAD.

View Article and Find Full Text PDF

Background: Abnormal protein depositions of amyloid β and tau are present in the nasal cavity in patients with Alzheimer's disease. This finding raises an idea that nasal tissues would be a promising source of diagnostic biomarkers for Alzheimer's disease. However, the amounts of amyloid β and tau are extremely small, making it difficult to quantify the levels using conventional methods such as ELISA, and thus it is challenging to utilize them for the diagnostic biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!