The isochorismate pyruvate lyase (IPL) from Pseudomonas aeruginosa, designated as PchB, catalyzes the transformation of isochorismate into pyruvate and salicylate, but it also catalyzes the rearrangement of chorismate into prephenate, suggesting that both reactions may proceed by a pericyclic mechanism. In this work, molecular dynamics simulations employing hybrid quantum mechanics/molecular mechanics methods have been carried out to get a detailed knowledge of the reaction mechanism of PchB. The results provide a theoretical rate constant enhancement by comparison with the reaction in solution, in agreement with the experimental data, and confirm the pericyclic nature of the reaction mechanism. The robustness of this promiscuous enzyme has been checked by considering the impact of Ala37Ile mutation, previously proposed by us to improve the secondary chorismate mutase (CM) activity. The effect of this mutation, which was shown to increase the rate constant for the CM activity by a factor of 10(3), also increases the IPL catalytic efficiency, although only by a factor of 6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja905271g | DOI Listing |
J Chem Theory Comput
January 2024
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø, N9037 Tromsø, Norway.
Chorismate mutase (CM) enzymes have long served as model systems for benchmarking new methods and tools in computational chemistry. Despite the enzymes' prominence in the literature, the extent of the roles that activation enthalpy and entropy play in catalyzing the conversion of chorismate to prephenate is still subject to debate. Knowledge of these parameters is a key piece in fully understanding the mechanism of chorismate mutases.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2023
CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Salicylate 2-O-β-d-glucoside (SAG) is a derivative of salicylate in plants. Recent reports showed that SAG could be considered as a potential anti-inflammatory substance due to its anti-inflammatory and analgesic effects, and less irritation compared with salicylic acid and aspirin. The biological method uses renewable resources to produce salicylic acid compounds, which is more environmentally friendly than traditional industry methods.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2023
Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka 580011, India. Electronic address:
Promysalin is an amphipathic antibiotic isolated from Pseudomonas promysalinigenes (previously Pseudomonas putida RW10S1) which shows potent antibacterial activities against Gram-negative pathogens by inactivating succinate dehydrogenase. Based on the in-vivo studies, promysalin is hypothesized to be assembled from three building blocks: salicylic acid, proline, and myristic acid via a proposed but uncharacterized hybrid NRPS-PKS biosynthetic pathway. So far, no in-vitro biosynthetic studies have been reported for this promising antibiotic.
View Article and Find Full Text PDFChembiochem
September 2022
Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
In the biosynthesis of menaquinone in bacteria, the thiamine diphosphate-dependent enzyme MenD catalyzes the decarboxylative carboligation of α-ketoglutarate and isochorismate to (1R,2S,5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-3-ene-1-carboxylate (SEPHCHC). The regioisomer of SEPHCHC, namely (1R,5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-2-ene-1-carboxylate (iso-SEPHCHC), has been considered as a possible product, however, its existence has been doubtful due to a spontaneous elimination of pyruvate from SEPHCHC to 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC). In this work, the regioisomer iso-SEPHCHC was distinguished from SEPHCHC by liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFChem Commun (Camb)
March 2021
ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!