Translating the oxidative stress hypothesis into the clinic: NOX versus NOS.

J Mol Med (Berl)

Centre for Vascular Health, Department of Pharmacology, Monash University, Building 13E, Wellington Rd, Clayton, Victoria 3800, Australia.

Published: November 2009

Cardiovascular diseases remain the leading cause of death in industrialised nations. Since the pathomechanisms of most cardiovascular diseases are not understood, the majority of therapeutic approaches are symptom-orientated. Knowing the molecular mechanism of disease would enable more targeted therapies. One postulated underlying mechanism of cardiovascular diseases is oxidative stress, i.e. the increased occurrence of reactive oxygen species such as superoxide. Oxidative stress leads to a dysfunction of vascular endothelium-dependent protective mechanisms. There is growing evidence that this scenario also involves impaired nitric oxide (NO)-cyclic GMP signalling. Out of a number of enzyme families that can produce reactive oxygen species, NADPH oxidases stand out, as they are the only enzymes whose sole purpose is to produce reactive oxygen species. This review focuses on the clinically validated targets of oxidative stress, NO synthase (NOS) and the NO receptor, soluble guanylate cyclase as well as the source of ROS, e.g. NADPH oxidases. We place recent knowledge in the function and regulation of these enzyme families into clinical perspective. For a comprehensive overview of the biology and pharmacology of oxidative stress and possible other sources and targets, we refer to other literature overviews.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772954PMC
http://dx.doi.org/10.1007/s00109-009-0544-2DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
cardiovascular diseases
12
reactive oxygen
12
oxygen species
12
enzyme families
8
produce reactive
8
nadph oxidases
8
stress
5
translating oxidative
4
stress hypothesis
4

Similar Publications

5-Fluorouracil (5-FU) is a chemotherapeutic that is used to treat solid tumors. However, 5-FU is associated with several side effects, including cardiotoxicity. Considering the importance of the intrinsic cardiac nervous system (ICNS) for the heart and that little is known about effects of 5-FU on this nervous system plexus, the purpose of the present study was to evaluate effects 5-FU at a low dose on the ICNS and oxidative and inflammatory effects in the heart in Wistar rats.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!