Alzheimer's disease (AD) is pathologically characterized by accumulation of beta-amyloid (Abeta) protein deposits and/or neurofibrillary tangles in association with progressive cognitive deficits. Although numerous studies have demonstrated a relationship between brain pathology and AD progression, the Alzheimer's pathological hallmarks have not been found in the AD retina. A recent report showed Abeta plaques in the retinas of APPswe/PS1DeltaE9 transgenic mice. We now report the detection of Abeta plaques with increased retinal microvascular deposition of Abeta and neuroinflammation in Tg2576 mouse retinas. The majority of Abeta-immunoreactive plaques were detected from the ganglion cell layer to the inner plexiform layer, and some plaques were observed in the outer nuclear layer, photoreceptor outer segment, and optic nerve. Hyperphosphorylated tau was labeled in the corresponding areas of the Abeta plaques in adjacent sections. Although Abeta vaccinations reduced retinal Abeta deposits, there was a marked increase in retinal microvascular Abeta deposition as well as local neuroinflammation manifested by microglial infiltration and astrogliosis linked with disruption of the retinal organization. These results provide evidence to support further investigation of the use of retinal imaging to diagnose AD and to monitor disease activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774073 | PMC |
http://dx.doi.org/10.2353/ajpath.2009.090159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!