Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria.

Biochim Biophys Acta

Department of Biochemistry and Biotechnology, Hirosaki University, Hirosaki 036-8561, Japan.

Published: December 2009

Calpains, calcium-dependent cysteine proteases, are involved in a variety of cellular processes. We have reported on the characteristics of mitochondrial mu-calpain and have shown that ERp57-associated mitochondrial mu-calpain cleaves the apoptosis-inducing factor (AIF) to a truncated form (tAIF). In addition, we found an unknown mitochondrial calpain. In this study, we identified and characterized this undescribed mitochondrial calpain in rat liver mitochondrial intermembrane space. The mitochondrial mu- and unknown calpains were separated by DEAE-Sepharose column chromatography. We immunoprecipitated the unknown calpain with anti-calpain small subunit and identified it as calpain 2 (m-calpain large subunit) by nanoflow-LC-MS/MS analysis and database searching. Because the identified mitochondrial calpain was stained with anti-m-calpain large subunit antibody, we named it mitochondrial m-calpain. The Ca(2+) dependency of mitochondrial m-calpain was similar to that of cytosolic m-calpain. Immunoprecipitation analyses showed that mitochondrial m-calpain is associated with a 75-kDa glucose-regulated protein, a member of the heat shock protein 70 family. We also investigated the involvement of mitochondrial m-calpain in the release of tAIF from mitochondria. Calpain inhibitor, PD150606, an anti-voltage-dependent anion channel (VDAC), and anti-Bax antibodies prevented the release of tAIF from mitochondria. In addition, we found that mitochondrial m-calpain truncated VDAC in Ca(2+)-dependent manner. This cleavage of VDAC promotes the mitochondrial accumulation of Bax and the release of tAIF from mitochondria. The accumulated Bax in mitochondrial outer membrane was co-immunoprecipitated with VDAC. Our results demonstrated that mitochondrial m-calpain plays a role in the release of tAIF from mitochondria by cleaving VDAC, and tAIF is released through VDAC-Bax pores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2009.10.002DOI Listing

Publication Analysis

Top Keywords

mitochondrial m-calpain
28
mitochondrial
16
release taif
16
taif mitochondria
16
mitochondrial calpain
12
m-calpain plays
8
plays role
8
role release
8
apoptosis-inducing factor
8
mitochondrial mu-calpain
8

Similar Publications

Inhibition of extranodal NK/T-cell lymphoma by Chiauranib through an AIF-dependent pathway and its synergy with L-asparaginase.

Cell Death Dis

May 2023

Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China.

Extranodal NK/T-cell lymphoma (NKTL) is a rare and aggressive form of extranodal lymphoma with a poor prognosis. Currently, there are very limited treatment options for patients with advanced-stage disease or those with relapsed/recurrent disease. Here we show that Chiauranib, an orally small molecule inhibitor of select serine-threonine kinases (aurora B, VEGFRs, PDGFR, CSF1R, c-Kit), inhibited NKTL cell proliferation, induced cell cycle arrest, as well as suppressed the microvessel density in vitro and in vivo similar as in other types of cancer cells.

View Article and Find Full Text PDF

COL-3-Induced Molecular and Ultrastructural Alterations in K562 Cells.

J Pers Med

January 2022

Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Novum, Karolinska Institutet, 141 57 Huddinge, Sweden.

Tetracycline-3 (4-dedimethylamino sancycline, COL-3) is a non-antibiotic tetracycline derivative. COL-3 exerts potent anti-metalloproteinase activity and its antitumor effects have been reported both in vitro and in vivo. In this study, we investigated the mechanisms of COL-3-induced cytotoxicity in a chronic myeloid leukemia cell line, K562, characterized by the BCR-ABL fusion protein.

View Article and Find Full Text PDF

Al exposure causes an alteration in the several ions in the body and causes toxicity. Such as apoptosis, oxidative stress, disruption in neuronal transport, mitochondrial damage, excitotoxicity, generation of inflammatory mediators, and microglial activation. These multiple mechanisms lead to the several neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (sALS).

View Article and Find Full Text PDF

An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum.

PLoS Pathog

May 2018

Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America.

Trypanosoma brucei undergoes life cycle form transitions from trypomastigotes to epimastigotes in the insect vector by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. The mechanism underlying these dramatic morphology transitions remains poorly understood. Here we report the regulatory role of the orphan kinesin KIN-E in controlling trypanosome morphology transitions.

View Article and Find Full Text PDF

Calpain and JNK pathways participate in isoflurane - induced nucleus translocation of apoptosis-inducing factor in the brain of neonatal rats.

Toxicol Lett

March 2018

Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:

Recent studies have demonstrated that volatile anesthetic causes caspase-dependent neuroapoptosis and persistent cognitive deficits in young animals. Apoptosis-inducing factor (AIF) can trigger apoptosis by caspase-independent pathway. Whether isoflurane induces neuroapoptosis by activation of AIF and its possible mechanism are underdetermined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!