Transgenic (Tg) mouse models of Parkinson's disease (PD) generated to date have primarily been designed to overexpress human alpha-synuclein (alpha-syn) to recapitulate PD-like motor impairments as well as PD-like nigrostriatal degeneration and alpha-syn pathology. However, cognitive impairments and cortical alpha-syn pathology are also common in PD patients. To model these features of PD, we created forebrain-specific conditional Tg mice that overexpress human wild type (WT) or A53T mutant alpha-syn. Here we show that both WT and A53T mutant alpha-syn lead to massive degeneration of postmitotic neurons in the hippocampal dentate gyrus (DG) during postnatal development, with hippocampal synapse loss as evidenced by reduced levels of pre- and postsynaptic markers. However, when mutant and WT alpha-syn expression was repressed until the Tg mice were mature postnatally and then induced for several months, no hippocampal neuron loss was observed. These data imply that developing neurons are more vulnerable to degenerate than mature neurons as a consequence of forebrain WT and mutant alpha-syn overexpression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812632 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2009.10.005 | DOI Listing |
J Biomol Struct Dyn
January 2025
School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran.
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the formation of Lewy bodies, which are primarily composed of misfolded α-Synuclein (α-Syn). DJ-1 is a crucial protein involved in the correct folding of α-Syn, and mutations impairing its function are associated with the onset of PD. One such mutation, the L166P substitution in DJ-1, which has been linked to early-onset PD and results in the loss of DJ-1's homodimer structure.
View Article and Find Full Text PDFSleep
December 2024
Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
Cell Death Dis
December 2024
Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism-Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels.
View Article and Find Full Text PDFWhile the etiology of most cases of Parkinson's disease (PD) are idiopathic, it has been estimated that 5-10% of PD arise from known genetic mutations. The first mutations described that leads to the development of an autosomal dominant form of PD are in the SNCA gene that codes for the protein alpha-synuclein (α-syn). α-syn is an abundant presynaptic protein that is natively disordered and whose function is still unclear.
View Article and Find Full Text PDFNat Commun
November 2024
Institute of Molecular Physical Science (IMPS), ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland.
The complex kinetics of disease-related amyloid aggregation of proteins such as α-Synuclein (α-Syn) in Parkinson's disease and Aβ42 in Alzheimer's disease include primary nucleation, amyloid fibril elongation and secondary nucleation. The latter can be a key accelerator of the aggregation process. It has been demonstrated that the chaperone domain BRICHOS can interfere with the secondary nucleation process of Aβ42.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!