alphabeta and gammadelta T cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and gammadelta T cell receptor (gammadeltaTCR) play instructional roles in specifying the alphabeta and gammadelta T-lineage fates, respectively. Nevertheless, the signaling pathways differentially engaged to specify fate and promote the development of these lineages remain poorly understood. Here, we show that differential activation of the extracellular signal-related kinase (ERK)-early growth response gene (Egr)-inhibitor of DNA binding 3 (Id3) pathway plays a defining role in this process. In particular, Id3 expression served to regulate adoption of the gammadelta fate. Moreover, Id3 was both necessary and sufficient to enable gammadelta-lineage cells to differentiate independently of Notch signaling and become competent IFNgamma-producing effectors. Taken together, these findings identify Id3 as a central player that controls both adoption of the gammadelta fate and its maturation in the thymus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768560PMC
http://dx.doi.org/10.1016/j.immuni.2009.07.010DOI Listing

Publication Analysis

Top Keywords

gammadelta cell
8
alphabeta gammadelta
8
cell receptor
8
adoption gammadelta
8
gammadelta fate
8
gammadelta
6
id3
5
marked induction
4
induction helix-loop-helix
4
helix-loop-helix protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!