The purpose of this research was to establish the dose of UV light (253.7 nm) needed to inactivate Listeria monocytogenes in distilled water, fresh brine (9% NaCl), spent brine, and diluted (5, 35, and 55%) spent brine, using uridine as a chemical actinometer. Strains N1-227 (isolated from hot dog batter), N3-031 (isolated from turkey franks), and R2-499 (isolated from meat) were mixed in equal proportions and suspended in each solution prepared so as to contain 10(-4) M uridine. Samples were irradiated in sterile quartz cells for 0, 5, 10, 15, 20, 25, or 30 min. Inactivation was evaluated by serially diluting samples in 0.1% peptone, by surface plating in duplicate onto modified Oxford agar and Trypticase soy agar with yeast extract, and by enrichment in brain heart infusion broth, followed by incubation at 37 degrees C for 24 to 48 h. For dose measurements, the absorbance (262 nm) was measured before and after irradiation. Differences were observed in population estimates depending on the solution (P < or = 0.05). Reductions were as follows from greatest to least: water > fresh brine > 5% spent brine > 35% spent brine > 55% spent brine > undiluted spent brine. UV light did not significantly reduce populations suspended in spent brine solutions. L. monocytogenes decreased to below the detection limit (1 log CFU/ml) at doses greater than 33.2 mJ/cm(2) in water and at doses greater than 10.3 mJ/cm(2) in fresh brine. Knowledge of UV dosing required to control L. monocytogenes in brines similar to those used for ready-to-eat meat processing will aid manufacturers in establishing appropriate food safety interventions for these products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-72.10.2144 | DOI Listing |
Langmuir
January 2025
Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Salt formations have been explored for the permanent isolation of spent nuclear fuel based on their high thermal conductivity, self-healing nature, and low hydraulic permeability to brine flow. Vacancy defect concentrations in salt complicate fracture mechanics not driven by dislocation dynamics and can influence the resulting surface structure. Classical molecular dynamic simulations were used to simulate tensile testing of salt crystals (halite) with vacancy defect concentrations of up to 0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada. Electronic address:
J Environ Manage
September 2024
Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland; Kokkola University Consortium Chydenius, University of Jyväskylä, Kokkola, Finland.
Ultrason Sonochem
August 2024
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran. Electronic address:
Battery industry, one of the most crucial components of the modern world, relies heavily on lithium production, and brines from the spent battery materials is one of the most important sources to exploit lithium. A new ultrasonic assisted membrane processing is proposed for lithium separation simulated brine. The effects of membrane composition, feed concentration, and ultrasonic conditions on the lithium extraction efficiency have been explored.
View Article and Find Full Text PDFMembranes (Basel)
April 2024
Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy.
Modern society and industrial development rely heavily on the availability of freshwater and minerals. Seawater reverse osmosis (SWRO) has been widely adopted for freshwater supply, although many questions have arisen about its environmental sustainability owing to the disposal of hypersaline rejected solutions (brine). This scenario has accelerated significant developments towards the hybridization of SWRO with membrane distillation-crystallization (MD-MCr), which can extract water and minerals from spent brine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!