The inner plexiform layer of the retina contains functional subdivisions, which segregate ON and OFF type light responses. Here, we studied quantitatively the ON and OFF synaptic input to small bistratified (blue-ON/yellow-OFF) ganglion cells in marmosets (Callithrix jacchus). Small bistratified cells display an extensive inner dendritic tier that receives blue-ON input from short-wavelength-sensitive (S) cones via blue cone bipolar cells. The outer dendritic tier is sparse and is thought to receive yellow-OFF input from medium (M)- and long (L)-wavelength-sensitive cones via OFF diffuse bipolar cells. In total, 14 small bistratified cells from different eccentricities were analyzed. The cells were retrogradely labeled from the koniocellular layers of the lateral geniculate nucleus and subsequently photofilled. Retinal preparations were processed with antibodies against the C-terminal binding protein 2, the AMPA receptor subunit GluR4, and/or gephyrin to identify bipolar and/or amacrine input. The results show that the synaptic input is evenly distributed across the dendritic tree, with a density similar to that reported previously for other ganglion cell types. The population of cells showed a consistent pattern, where bipolar input to the inner tier is about fourfold greater than bipolar input to the outer tier. This structural asymmetry of bipolar input may help to balance the weight of cone signals from the sparse S cone array against inputs from the much denser M/L cone array.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.22183 | DOI Listing |
Proc Natl Acad Sci U S A
September 2024
Department of Biological Structure, University of Washington, Seattle, WA 98195.
The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2022
To restore vision to the low vision, epiretinal implants have been developed to electrically stimulate the healthy retinal ganglion cells (RGCs) in the degenerate retina. Given the diversity of retinal ganglion cells as well as the difference in their visual function, selective activation of RGCs subtypes can significantly improve the quality of the restored vision. Our recent results demonstrated that with the proper modulation of the current amplitude, small D1-bistratified cells with the contribution to blue/yellow color opponent pathway can be selectively activated at high frequency (200 Hz).
View Article and Find Full Text PDFJ Comp Neurol
June 2022
Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
Immunoreactivity for calcium-/calmodulin-dependent protein kinase II (CaMKII) in the primate dorsal lateral geniculate nucleus (dLGN) has been attributed to geniculocortical relay neurons and has also been suggested to arise from terminals of retinal ganglion cells. Here, we combined immunostaining with single-cell injections to investigate the expression of CaMKII in retinal ganglion cells of three primate species: macaque (Macaca fascicularis, M. nemestrina), human, and marmoset (Callithrix jacchus).
View Article and Find Full Text PDFFront Mol Neurosci
December 2021
Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany.
The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes.
View Article and Find Full Text PDFBrain Struct Funct
December 2021
Save Sight Institute, Discipline of Clinical Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
We determined the retinal ganglion cell types projecting to the medial subdivision of inferior pulvinar (PIm) and the superior colliculus (SC) in the common marmoset monkey, Callithrix jacchus. Adult marmosets received a bidirectional tracer cocktail into the PIm (conjugated to Alexa fluor 488), and the SC (conjugated to Alexa fluor 594) using an MRI-guided approach. One SC injection included the pretectum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!