Responses of wheat seedlings to exogenous selenium supply under cold stress.

Biol Trace Elem Res

The College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China.

Published: September 2010

Dose-dependent effects of selenium on growth and physiological trait of wheat seedlings (Triticum aestivum L. cv Han NO.7086) exposed to cold stress are reported. Responses of seedlings were different depending on the Se concentration. The treatments with 0.5 and 1.0 mg Se kg(-1) significantly increased biomass and chlorophyll content of seedlings. However, the treatments at 2.0 and 3.0 mg Se kg(-1) only induced an evident increase in chlorophyll content and did not promote biomass accumulation of seedlings. Antioxidant compounds content (anthocyanins, flavonoids, and phenolic compounds) and antioxidant enzymes' activities (peroxidase and catalase) increased by different Se treatments, while only the treatment with 1.0 mg Se kg(-1) induced a significant reduce in malondialdehyde content and the rate of superoxide radical production of wheat seedlings. The results of this study demonstrated that Se supply could increase antioxidant capacity of seedlings, and optimal Se supply reduced production of free radicals, membrane lipid peroxidation, and promoted biomass accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-009-8542-3DOI Listing

Publication Analysis

Top Keywords

wheat seedlings
12
cold stress
8
treatments kg-1
8
chlorophyll content
8
kg-1 induced
8
biomass accumulation
8
seedlings
7
responses wheat
4
seedlings exogenous
4
exogenous selenium
4

Similar Publications

Occurrence of AG-5 Causing Root Rot on in Northwestern China.

Plant Dis

January 2025

Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;

Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.

View Article and Find Full Text PDF

Trifluralin (FLL) is extensively used in rapeseed fields in the Qinghai-Tibet Plateau (QTP) region. However, the degradation kinetics of FLL in this area and its impact on environmental microbial communities are not yet known. To investigate the degradation patterns and ecological benefits of FLL, this study established a comprehensive method for detecting FLL residues and selected efficient degrading bacterial strains.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Herbicidal Formulations with Plant-Based Compounds to Control , and Weeds.

Plants (Basel)

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 5000, Argentina.

Numerous studies have shown the potential effect of bioactive agents against weeds. In this study, we developed two binary formulations with nonanoic acid, citral, or thymoquinone as herbicides and evaluated their physicochemical properties. The presence of the bioactive compounds in the formulations was confirmed through FTIR spectroscopy.

View Article and Find Full Text PDF

Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!