Photorefractive properties of a cerium-doped strontium barium niobate single crystal (Sr(0.61)Ba(0.39)Nb(2)O(6)) are investigated with Q-switched light pulses (wavelength 532 nm). Pyroelectric fields are the dominant charge driving force and significantly enhance light-induced refractive-index changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.19.000260 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.
View Article and Find Full Text PDFLangmuir
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Droplet manipulation on functional surfaces is an urgent problem to be solved. Fast and precise droplet manipulation plays an important role in many applications, such as microreactors and microfluidics. Although numerous techniques have been developed to manipulate droplets by injecting external stimuli, it remains a challenge to achieve high-precision, high-sensitivity, and fast droplet manipulation on smart, slippery response surfaces.
View Article and Find Full Text PDFSmall
December 2024
Fiber and Particle Engineering Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu, 90014, Finland.
Here, hybrid stimuli-responsive (exhibiting pyroelectricity and piezoelectricity) porous cryogels are engineered by embedding tourmaline nanoparticles (TNs) in a cellulose nanofiber (CNF) skeleton to generate high-performance CNF-TN-based airborne particulate matter (PM) filters. First, single-layer hybrid cryogels with varying TN contents (0-5% w v) are assembled, and the design principles for multilayered filters are established based on a novel sequential pre-freezing and freeze-drying technique. As observed, the embedded TNs transformed the CNF network into a more homogeneous, isotropic, and firm structure, thus improving the structural integrity and thermal stability of the assembled cryogels while maintaining their ultrahigh porosity and low density.
View Article and Find Full Text PDFMater Horiz
December 2024
Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride--trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, CsSnI, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features.
View Article and Find Full Text PDFSci Adv
November 2024
School of Life Sciences, Shanghai University, Shanghai 200444, China.
The conventional molecular immunogenic cell death (ICD) inducers suffer from poor biocompatibility and unsatisfactory efficacy. Here, a biocompatible nanosized covalent organic framework (nCOF)-based pyroelectric catalyst (denoted as TPAD-COF NPs) is designed for pyroelectric catalysis-activated in situ immunotherapy. TPAD-COF NPs confine organic pyroelectric molecules to rigid TPAD-COF NPs to substantially reduce aggregation and enhance biocompatibility, thus improving pyroelectrocatalytic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!