Inhibition of phosphoinositide 3-kinase ameliorates dextran sodium sulfate-induced colitis in mice.

J Pharmacol Exp Ther

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

Published: January 2010

AI Article Synopsis

  • PI3Kgamma plays a key role in inflammatory cell activation, making it a target for therapies, with AS605240 being a strong inhibitor showing promise for treating chronic inflammation.
  • AS605240 demonstrated beneficial effects in mouse models of colitis, improving survival rates and reducing disease severity when given before or after inducing inflammation.
  • The compound suppressed the levels of proinflammatory cytokines and immune cell infiltration in the colon, indicating its potential as a new treatment for inflammatory bowel diseases by restoring the balance between proinflammatory and anti-inflammatory responses.

Article Abstract

The critical role of phosphoinositide 3-kinase gamma (PI3Kgamma) in inflammatory cell activation and recruitment makes it an attractive target for immunomodulatory therapy. 5-Quinoxilin-6-methylene-1,3-thiazolidine-2,4-dione (AS605240), a potent PI3Kgamma inhibitor, has been reported to ameliorate chronic inflammatory disorders including rheumatoid arthritis, systemic lupus erythematosus, and atherosclerosis. However, its in vivo effect on intestinal inflammation remains unknown. Here we evaluated the protective and therapeutic potentials of AS605240 in mice with dextran sodium sulfate (DSS)-induced acute and chronic colitis. Our results showed that AS605240 improved survival rate, disease activity index, and histological damage score in mice administered DSS in both preventive and therapeutic studies. AS605240 treatment also significantly inhibited the increase in myeloperoxidase levels, macrophage infiltration, and CD4(+) T-cell number in the colon of DSS-fed mice. The DSS-induced overproduction of colonic proinflammatory cytokines including interleukin (IL)-1beta, tumor necrosis factor-alpha, and interferon-gamma was significantly suppressed in mice undergoing AS605240 therapy, whereas colonic anti-inflammatory cytokines such as IL-4 were up-regulated. The down-regulation of the phospho-Akt level in immunological cells from the inflamed colon tissue and spleen of AS605240-treated mice was detected both by immunohistochemical analysis and Western blotting. These findings demonstrate that AS605240 may represent a promising novel agent for the treatment of inflammatory bowel disease by suppressing leukocyte infiltration as well as by immunoregulating the imbalance between proinflammatory and anti-inflammatory cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.109.153494DOI Listing

Publication Analysis

Top Keywords

phosphoinositide 3-kinase
8
dextran sodium
8
anti-inflammatory cytokines
8
mice
6
as605240
6
inhibition phosphoinositide
4
3-kinase ameliorates
4
ameliorates dextran
4
sodium sulfate-induced
4
sulfate-induced colitis
4

Similar Publications

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Molecular Mechanism of N-Acetylcysteine Regulating Proliferation and Hormone Secretion of Granulosa Cells in Sheep.

Reprod Domest Anim

January 2025

Tianzhu County Animal Husbandry Technology Extension Station, Tianzhu, Gansu, China.

Granulosa cells (GCs) are pivotal in the development of ovarian follicles, serving not only as supportive cells but also as the primary producers of steroid hormones. The proliferation of these cells and the synthesis of steroid hormones are crucial for follicular development and atresia. In our study, GCs were isolated using follicular fluid aspiration and subsequently identified through immunofluorescence.

View Article and Find Full Text PDF

Rationalizing Predictions of Isoform-Selective Phosphoinositide 3-Kinase Inhibitors Using MolAnchor Analysis.

J Chem Inf Model

January 2025

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, Bonn D-53115, Germany.

Explaining the predictions of machine learning models is of critical importance for integrating predictive modeling in drug discovery projects. We have generated a test system for predicting isoform selectivity of phosphoinositide 3-kinase (PI3K) inhibitors and systematically analyzed correct predictions of selective inhibitors using a new methodology termed MolAnchor, which is based on the "anchors" concept from explainable artificial intelligence. The approach is designed to generate chemically intuitive explanations of compound predictions.

View Article and Find Full Text PDF

Phosphatidylinositol-3 kinases (PI3Ks) play a critical role in maintaining cardiovascular health and the development of cardiovascular diseases (CVDs). Specifically, vacuolar Protein Sorting 34 (VPS34) or PIK3C3, the only member of Class III PI3K, plays an important role in CVD progression. The main function of VPS34 is inducing the production of phosphatidylinositol 3-phosphate, which, together with other essential structural and regulatory proteins in forming VPS34 complexes, further regulates the mammalian target of rapamycin activation, autophagy, and endocytosis.

View Article and Find Full Text PDF

Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.

Chin Med J (Engl)

January 2025

Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.

Background: Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!