Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash.

J Hazard Mater

Department of Water Resources and Environmental Engineering, Tamkang University, Tamsui, Taipei, Taiwan, ROC.

Published: February 2010

Water-extracted municipal solid waste incinerator (MSWI) fly ash was treated by a process of wet ball milling, using desalinated water as the milling solution. We investigated the influence of the milling process on the partitioning and leaching characteristics of lead (Pb) and the particle size distribution. The results show that 93.11% of the Pb was partitioned into the milled ash, 2.60% to the milling balls, and 0.17% to the inner surface of the milling jar, while amounts lower than the detection limit remained in the milled solution. As tested by the toxicity characteristic leaching procedure (TCLP), the leaching of Pb was inhibited after short-term grinding (from 5.2 to 1.2mg/L after 1h of milling), and further reduced by about 96% after 96h of ball milling. The mobility of the heavy metal was analyzed after a sequential extraction procedure. The results also show that Pb tended to become more stable after milling. The size distribution of particles was analyzed by a laser particle diameter analyzer and their morphology during grinding was observed using scanning electron microscopy. The median size of the fly ash decreased significantly from 36 to 5 microm after 0.5h of milling, but then only slightly, from 5 to 2 microm, with further milling from 0.5 to 96 h, due to the concurrent actions of fragmentation and/or agglomeration. The reason for the stabilization of Pb by ball milling was probably that Pb was sealed in the milled fly ash during the fragmentation and agglomeration of particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.09.092DOI Listing

Publication Analysis

Top Keywords

ball milling
16
fly ash
16
milling
12
wet ball
8
particle size
8
municipal solid
8
solid waste
8
waste incinerator
8
size distribution
8
ash
5

Similar Publications

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF

This article reports on the scalability of a combined wet grinding technique applying planetary ball mill and ZrO pearls as the grinding medium. After the determination of the parameters in a laboratory scale, the tenfold scale-up method was set. Meloxicam (MEL) was used as a nonsteroidal anti-inflammatory drug (NSAID) intended for per os delivery.

View Article and Find Full Text PDF

Background/objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder.

View Article and Find Full Text PDF

In this study, a sustainable cellulose-based flame-retardant additive was developed, characterized, and incorporated into polypropylene (PP). Microcrystalline cellulose (Cel) was chemically modified with PO using the solvent-free ball-milling mechanochemistry approach at room temperature. This modification enabled phosphorus grafting onto cellulose, significantly enhancing the cellulose charring ability and improving the thermal stability of the char as revealed by thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Metal synergy can enhance the catalytic performance, and a prefabricated solid precursor can guide the ordered embedding, of secondary metal source ions for the rapid synthesis of bimetallic organic frameworks (MM'-MOFs) with a stoichiometric ratio of 1:1. In this paper, containing well-defined binding sites was synthesized by mechanical ball milling, which was used as a template for the induced introduction of Fe ions to successfully assemble the ordered bimetallic (where denotes template-directed synthesis of MOF-74). Its electrocatalytic performance is superior to that of the conventional one-step-synthesized (where denotes one-step synthesis of MOF-74), and the ratio of the two metal sources, Co and Fe, is close to 1:1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!