14-3-3sigma is a potential tumor suppressor, and loss of 14-3-3sigma expression plays an important role in carcinogenesis and metastasis. To explore the possible mechanism of 14-3-3sigma in nasopharyngeal carcinoma (NPC) invasion and metastasis, targeted proteomic analysis was performed on 14-3-3sigma-associated proteins from NPC cells. As the results, 112 proteins associated with 14-3-3sigma were identified, and four 14-3-3sigma-interacted proteins: keratin 8, epidermal growth factor receptor (EGFR), small GTP-binding protein RAB7, and p53 were confirmed by coimmunoprecipitation and Western blot analysis. The 14-3-3sigma-associated proteins could be grouped into eight clusters based on their molecule functions. Protein-protein interaction (PPI) analysis indicated that 14-3-3sigma/EGFR/keratin 8 interactions may be involved in the invasion and metastasis of NPC. 14-3-3sigma/EGFR/keratin 8 could form complexes in NPC cells. 14-3-3sigma downregulation in NPC may lead to the overexpression of EGFR and keratin 8, which increases the invasion ability of NPC cells possibly by activating the downstream signal molecules and reorganizing cytoskeleton. The data suggest that the biological functions of 14-3-3sigma in NPC are diversified, and 14-3-3sigma could inhibit the in vitro invasive ability of NPC cells possibly through 14-3-3sigma/EGFR/keratin 8 interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2009.10.001 | DOI Listing |
Oral Oncol
January 2025
Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China. Electronic address:
Background: Chemoresistance is one ofthe main challenges for advanced NPCtreatment.We previouslyproved LHX2 transcriptionally regulates FGF1 and promotes cancer progression through activating FGF1/FGFR axis,which prompted us toexplore the potential inhibitors for FGFR to improve the therapy response.
Methods: RT-qPCR, immunohistochemistry, western blot assayand immunofluorescencewere applied to verify the gene expression levels.
Pharmaceutics
January 2025
NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC).
Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect.
Biomolecules
January 2025
Department of Biology, University of Padua, 35131 Padua, Italy.
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
Radiotherapy (RTx) is a highly effective treatment for head and neck cancer that can cause concurrent damage to surrounding healthy tissues. In cases of nasopharyngeal carcinoma (NPC), the auditory apparatus is inevitably exposed to radiation fields and sustains considerable damage, resulting in dysfunction. To date, little research has been conducted on the changes induced by RTx in the middle ear and the underlying mechanisms involved.
View Article and Find Full Text PDFmBio
January 2025
Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Unlabelled: Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!