This study aimed to gain insight into the individual and interactive effects of segmental mass proportions and coupling properties on external loading in simulated forefoot landings. An evaluated four-segment wobbling mass model replicated forefoot drop landings (height: 0.46 m) performed by two subjects. A comparison of the peak impact forces (GFzmax) produced during the evaluated landing and further simulated landings performed using modified (+/-5% perturbation) mass proportions and coupling properties was made. Independent segmental mass proportion changes, particularly in the upper body, produced a prominent change in GFzmax of up to 0.32 bodyweight (BW) whereas independent mass coupling stiffness and damping alterations had less effect on GFzmax (change in GFzmax of up to 0.18 BW). When combining rigid mass proportion reductions with damping modifications, an additional GFzmax attenuation of up to 0.13 BW was produced. An individual may be predisposed to high loading and traumatic and overuse injury during forefoot landings owing to their inherent inertia profile. Subject-specific neuromuscular modifications to mass coupling properties may not be beneficial in overriding the increased forces associated with larger rigid mass proportions.

Download full-text PDF

Source
http://dx.doi.org/10.1123/jab.25.3.238DOI Listing

Publication Analysis

Top Keywords

mass proportions
16
coupling properties
16
proportions coupling
12
mass
9
interactive effects
8
properties external
8
external loading
8
loading simulated
8
simulated forefoot
8
segmental mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!