The effect of variable protein binding (taken as independent parameter) on pharmacological activity of drugs is considered in terms of the exposure or the steady state concentration of unbound drug at targeted tissue. Based on the application of the parallel tube or dispersion models it is shown that for the most common case of orally administered drugs eliminated mainly by hepatic metabolism the increase of protein binding may be beneficial for drug action. In contrary, consideration of this case using the well-stirred model suggests that changes in protein binding do not influence drug efficiency. The relatively simplistic well-stirred model appears not accurate enough to reveal the influence of variation in protein binding on drug exposure. The conclusion in favor of the predictions based on parallel tube or dispersion models is supported by experimental data. In case of the oral dosing of drugs that are subjected to nonhepatic elimination as well as for parenteral drug administration with arbitrary routes of elimination the decrease in protein binding would lead to the increase of unbound drug exposure and thus may enhance drug efficiency. An advanced approach to evaluation of drug activity based on the assumption of the necessity to exceed certain minimal drug concentration at action site is implied. Such a consideration leads to the conclusion that there should be an optimal value of protein binding which provides maximum drug activity. The case when drug action is determined by binding to targeted receptors is discussed in terms of equilibrium binding and kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.21958 | DOI Listing |
ACS Sens
January 2025
Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202.
The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
PLoS Pathog
January 2025
Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!