The anticancer drug cyclophosphamide (CP) has nephrotoxic effects besides its urotoxicity, which both in turn limit its clinical utility. The nephrotoxicity of CP is less common compared to its urotoxicity, and not much importance has been given for the study of mechanism of CP-induced nephrotoxicity so far. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the kidney injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the nephrotoxicity of CP and the possible protective effects of seleno L-methionine (SLM) on rat kidneys were investigated. Forty-two Sprague-Dawley rats were equally divided into six groups of seven rats each. The control group received saline, and other rats were injected with CP (100 mg/kg), SLM (0.5 or 1 mg/kg), or CP + SLM intraperitoneally. Malondialdehyde (MDA) and glutathione (GSH) levels in kidney homogenates of rats were measured, and kidney tissues were examined under the microscope. CP-treated rats showed a depletion of renal GSH levels (28% of control), while CP + SLM-injected rats had GSH values close to the control group. MDA levels increased 36% of control following CP administration, which were significantly decreased after SLM treatment. Furthermore, these biochemical results were supported by microscopical observations. In conclusion, the present study not only points to the therapeutic potential of SLM in CP-induced kidney toxicity but also indicates a significant role for ROS and their relation to kidney dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-009-8535-2 | DOI Listing |
Cancer Treat Res Commun
January 2025
Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA. Electronic address:
Clear cell renal cell carcinoma (ccRCC) poses a significant global health challenge as its incidence continues to rise, resulting in a substantial annual mortality rate. Major clinical challenges to current ccRCC treatments include high drug-resistance rates as well as dose-limiting adverse events; underlining the need to identify additional 'druggable' targets. TGF-β1, VEGF, and PD-L1 are potential therapeutic targets in ccRCC.
View Article and Find Full Text PDFJ Nutr
December 2024
Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States. Electronic address:
Background: Selenium (Se) is an essential trace element that exerts most biological activities through selenoproteins. Dietary selenium is a key regulator of red cell homeostasis and stress erythropoiesis. However, it is unknown whether the form and increasing doses of Se supplementation in the diet impact stress erythropoiesis under anemic conditions.
View Article and Find Full Text PDFEnviron Res
January 2025
Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China. Electronic address:
Decreasing cadmium (Cd) accumulation in wheat grain is significant for human health. This study compared the effect of soil applied different selenium (Se) species on Cd accumulation in wheat. In Cd-contaminated soil, the applications of inorganic Se species, organic Se species, and selenium nanoparticles (SeNPs) had little effect on physicochemical properties, available Cd content, and Cd fractions in soil, but changed the β diversity and relative abundance of bacteria at genus level.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Talanta
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:
The quantitative speciation of selenium in biological systems is highly important for evaluating health status and elucidating transformations of Se species in physiological and pathological processes. Hyphenation of capillary electrophoresis with inductively coupled plasma mass spectrometry (CE-ICPMS) is promising for this purpose. However, the unfavorable or insufficient sensitivity for selenium analysis with CE-ICPMS seriously limits its practical applications in biological analysis, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!