The strain Sphingomonas sp. GY2B is a high efficient phenanthrene-degrading strain isolated from crude oil contaminated soils that displays a broad-spectrum degradation ability towards PAHs and related aromatic compounds. This paper reports embedding immobilization of strain GY2B in calcium alginate gel beads and the rapid degradation of phenanthrene by the embedded strains. Results showed that embedded immobilized strains had high degradation percentages both in mineral salts medium (MSM) and 80% artificial seawater (AS) media, and had higher phenanthrene degradation efficiency than the free strains. More than 90% phenanthrene (100 mg x L(-1)) was degraded within 36 h, and the phenanthrene degradation percentages were >99.8% after 72 h for immobilized strains. 80% AS had significant negative effect on the phenanthrene degradation rate (PDR) of strain GY2B during the linear-decreasing stage of incubation and preadsorption of cells onto rice straw could improve the PDR of embedded strain GY2B. The immobilization of strain GY2B possesses a good potential for application in the treatment of industrial wastewater containing phenanthrene and other related aromatic compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760423 | PMC |
http://dx.doi.org/10.3390/ijerph6092470 | DOI Listing |
Ecotoxicol Environ Saf
March 2016
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
Nano bamboo charcoal (NBC) has been commonly used in the production of textiles, plastics, paint, etc. However, little is known regarding their effects towards the microorganisms. The effects of NBC on phenanthrene degrading strain Sphingomonas sp.
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2016
School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2013
School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
A fusant strain F14 with high biodegradation capability of phenanthrene was obtained by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280).
View Article and Find Full Text PDFCurr Microbiol
September 2012
College of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
The fusant strain (F14), which produced by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280), was tested for phenanthrene biodegradation at 30 °C and pH of 7.
View Article and Find Full Text PDFJ Hazard Mater
September 2010
School of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, PR China.
Four oil component-degrading bacteria and one oil-tolerant microalgae, Scenedesmus obliquus GH2, were used to construct an artificial microalgal-bacterial consortium for crude-oil degradation. The bacterial strains included Sphingomonas GY2B and Burkholderia cepacia GS3C, along with a mixed culture, named GP3, containing Pseudomonas GP3A and Pandoraea pnomenusa GP3B. GY2B could only degrade polycyclic aromatic hydrocarbons, GS3C was able to degrade aliphatic chain hydrocarbons, and GP3 could utilize both saturated and aromatic hydrocarbons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!